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Abstract 

 
A  decision­maker  acquires  payoff­relevant  information  until  she  reaches  her storing capacity, at 
which point  she either  terminates the  decision­making  and chooses  an action,  or  discards some 
information.  By  conditioning the probability  of termination  on the information  collected, she 
controls  the  correlation  between  the  payoff  state  and  her  terminal  action.    We  provide  an 
optimality  condition for the emerging stochastic choice. The condition highlights the benefits of 
selective memory applied to the extracted signals. The constrained­optimal choice rule exhibits (i) 
confirmation  bias, (ii) speed­accuracy  complementarity,  (iii)  overweighting  of  rare  events, and 
(iv)  salience effect. 
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1 Introduction

Economic agents often acquire information about the state of the economy before making their

decisions. The information is typically modelled as a signal that helps the agent refine the distri-

bution of the state and improve the decision-making. Often, signals come over time and agents can

absorb only a small number of them. We capture this information-processing friction by assuming

that agents can receive as many signals as they wish but can remember only a finite number of

them when making their choices. In the simplest setting we analyze, the agent can only remember

one signal. A key strategic variable that we consider is to allow the agent to ignore some signals

with positive probability and restart the signal extraction process. An agent in the face of the

first signal she observes can either make a choice based on this observation or dispose with the

first signal and rerun the very same stochastic signal extraction process. In the face of the second

observed signal she can either make a final decision (after the second observation and according to

the same strategy that maps instantaneous observations to choices) or rerun the signal extraction

again and so on. Specifically, we allow agents to employ an arbitrary stationary decision process

that specifies for each possible signal realization a probability with which the agent restarts the

process as well as the chosen action in case of termination. We do not impose time constraints and

costs in the basic formulation so that the friction comes solely from the limited information-storing

capacity of the agent.

We ask ourselves: Should the agent optimally make her choice as soon as she receives the

first signal whatever the realization of it is, or could she be better off by rerunning the very same

information-acquisition process? Can hesitation—selective repetition of a fixed stochastic decision

procedure where the repetition conditions on the procedure’s outcome—be welfare-enhancing?

A general insight is that selective rerunning of the primitive decision procedure is typically

optimal. To document this most generally, we provide a simple necessary condition satisfied by

the optimal rerunning strategy. The result is an interim indifference condition imposed on the

agent who has concluded her decision-making with a plan to choose a particular action. Given the

recommended action, the agent’s posterior expected payoff from implementing this action must be

the same as the posterior expected payoff from rerunning the whole decision-making—the whole

selective repetitions of the primitive signal extraction—and implementing whichever action the

second run of the decision-making will recommend. We refer to this as to the second-thought-free

condition.

For illustration, consider a binary decision of whether to make an investment of a fixed size.

The agent receives payoff 1 if she invests in the good state of the economy, payoff −2 if she invests in

the bad state, and receives 0 when she does not invest whatever the state. Both states are a priori

equally likely and give rise to a population of good and bad signals, with the share of the good

signals at 90% in the good state and 10% in the bad state. The agent draws possibly several signal

realizations in sequence but remembers only the last one when making her investment choice. We

assume she invests if the last drawn signal was good (and does not invest upon the last bad signal).

Observe that the decision rule generated by the immediate termination upon the first signal that
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comes in does not generate a second-thought-free choice rule: An agent whose first observed signal

was good prefers to rerun the decision process, since the new run will either lead to investing again

or will give rise to the signal realization that conflicts with the first observation and will lead to

not investing. Since, conditional on two conflicting signals, not investing is preferred (because the

false-positive investment error is relatively costly), the agent benefits from having second thoughts

when the first observed signal is good.

In the sequel, we interpret the probability of terminating the decision process after receiving

a particular signal as a search intensity for the signal. A higher probability of termination at a

given information set inflates the likelihood that the agent makes the terminal choice at the set.

We show that the failure of the second-thought-free condition with uniform search intensity in the

above investment decision example indicates that relative to the uniform search, the agent benefits

from increasing the search intensity for the bad attribute.

More generally, the second-thought-free condition follows from the first-order condition imposed

on the optimal search intensities. In the above example, a marginal increase in the relative search

intensity in favor of the bad signal is welfare-enhancing when starting from the immediate termi-

nation strategy. Consider a deviation from the immediate termination strategy that consists of

repeating the signal draw with a small probability whenever the observed signal is good. This new

decision procedure effectively replaces a marginal measure of contingencies in which the agent ter-

minates after observing the good signal with new draws of the signal. The indifference to marginal

changes in the search intensities at optimum implies the second-thought-free condition. Given that

a typical signal structure combined with the immediate termination strategy would not result in

a second-thought-free rule for a generic payoff function, we conclude that some asymmetric termi-

nation strategy that differentiates the termination decision according to the last observed signal is

generically optimal.

The model provides microfoundations to a range of behavioral stylized facts. The unifying

principle of our behavioral insights is the intuition that the agent targets her search towards the type

of evidence that would provide her with more informed posteriors under the uniform search. This

principle generates confirmation bias, since evidence that confirms the agent’s prior leads to more

informed posterior than does evidence that contradicts the prior. An optimally targeted information

search also generates speed-accuracy complementarity ; that is, accuracy of choice declines with the

response time. The effect is generated by the confirmation bias: The agent encountering evidence

contradicting her prior is likely to disregard the evidence and to have a second thought. Hence,

long response times indicate a surprising state of the world, and the constrained-optimal choice

rule commits errors in the surprising state relatively often. Overweighting of rare events occurs

when the agent’s task is to form a probability belief about an event that is known to be rare, such

as a flight accident, by observing a random flight outcome. Since observing a flight accident is

far more informative about the probability of future accidents than observing an uneventful flight,

the agent optimally biases her search towards eventful flights. In the last behavioral application,

we show that distinct states of the world are salient in the sense that they attract the agent’s
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attention (i.e., trigger higher termination rates in our framework). The effect arises because an

indistinct perception stimulus that can be generated by several similar states is less informative

than a distinct perception stimulus likely generated by a specific distinct state. Hence, the optimal

information search targets stimuli indicating distinct states.

Related literature

When the decision-maker can choose from feasible error distributions, then choice data par-

tially reveal the decision-maker’s objective, since the constrained-optimal choice rule exhibits costly

types of error relatively rarely. At various levels of formalization, this error-management idea has

appeared repeatedly in biology, psychology and economics; see Johnson et al. (2013) for an in-

terdisciplinary review. A range of economic models make the error-management idea precise by

specifying particular sets of feasible error distributions. These models differ greatly in the assumed

constraints imposed on decision-making, and hence in the predicted constrained-optimal stochas-

tic choice rules. In what follows we review the variety of the modeling approaches to frictional

decision-making.

Sims (2003), Matějka and McKay (2015) and Steiner et al. (2017) constrain the expected reduc-

tion of the entropy of the decision-maker’s belief within the decision process. The entropy-based

models generate constrained-optimal choice rules akin to the logit rules used in structural estima-

tion. The details of the predictions over the stochastic choice are, however, sensitive to the assumed

entropy-based constraint. A different information-processing constraint is assumed in sequential-

sampling and drift-diffusion models, e.g. Wald (1945), Arrow et al. (1949), Ratcliff (1978), Hébert

and Woodford (2016), and Morris and Strack (2017). By choosing the regions of the stopping be-

liefs, the decision-maker can trade off the accuracy against the speed of her decision procedure. The

class of drift-diffusion models restricts the agents to learning procedures with continuously evolving

Bayesian beliefs. In contrast to this assumption, Zhong (2017) argues that learning processes with

discontinuous belief evolution are optimal under a broad class of information acquisition costs,

and Che and Mierendorff (2016) study one such discontinuous learning in which signals arrive in

a Poisson process. Yet another modeling approach to limited cognition conceptualizes decision-

making and information processing as finite algorithms with adjustable parameters, e.g. Hellmann

and Cover (1970), Compte and Postlewaite (2012), and Wilson (2014).

Compared to the above diverse models that fully specify the cognitive friction, our model

delivers partial characterization of the constrained-optimal stochastic choice rule without a full

specification of the cognitive constraint. Another research program delivering robust predictions

about constrained-optimal stochastic behavior without full specification of the cognitive friction

is by Caplin et al. (2017) who provide full behavioral characterization of all posterior-separable

information cost models. Yet another alternative to our attempt to deliver predictions robust to

the detail of the friction is to estimate the information processing cost from the choice data. The

proposed methodologies of information cost identification in Caplin and Dean (2015) and Oliveira

et al. (2017) make this approach theoretically feasible when rich data, such as choice data over

menus or many decision problems, are available.
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This paper belongs to a growing economic literature that explains established behavioral phe-

nomena as the constrained-optimal behavior of decision-makers facing information processing fric-

tions. For instance, Robson (2001), Rayo and Becker (2007), Netzer (2009), and Khaw et al. (2017)

provide microfoundations for risk attitudes; Gabaix and Laibson (2017) endogenize discounting; and

Wilson (2014), Compte and Postlewaite (2012), and Leung (2017) establish constrained-optimal

ignorance of weakly informative news. The partitional model of Dow (1991) focuses on the problem

of coarsening of rich information available to the decision-maker.1

A related model of extreme-events oversampling was developed by psychologists Lieder et al.

(2014). Their decision-maker has access to the objective distribution of a payoff state but faces

a friction in the computation of the payoff expectations. She forms the expected payoffs for con-

sidered actions in a Monte Carlo simulation as a utility average over a finite sample of simulated

payoff states. Instead of the uniform sampling from the true belief distribution, she optimally

oversamples states in which stakes are high (and corrects for the oversampling by lowering the

respective weights), as in the so-called importance-sampling Monte Carlo method, e.g. Glynn and

Iglehart (1989). This project and us examine the opposing sides of information processing. While

we assume non-representative sampling in the signal collection and allow for frictionless formation

of the posterior beliefs, Lieder et al. take available information as given and impose the friction on

its interpretation.

Brain imaging technologies have recently advanced to the level that documenting the process

of hesitation in real time for non-human subjects is possible. Studies on rats (Redish, 2016) and

monkeys (Rich and Wallis, 2016) document that animals in some decision problems deliberate in a

stochastic series of action plans, in which their minds move there-and-back between the available

options. The researchers are able to link distinct hippocampal activities representing particular

parts of a maze, and link in real time those brain patterns to a sequence of deliberation of a

rat that has paused and is choosing how to proceed in the maze. Unlike the neural processes

represented by the drift-diffusion model of Ratcliff (1978) that assumes a continuous evolution of a

mental state, these deliberation processes, like our model, exhibit discrete transitions between the

deliberated actions.2

2 Model

2.1 General model

An agent faces a decision under uncertainty. She chooses an action a ∈ A in a process specified

below and receives a payoff u(a, θ) in the fixed payoff state θ ∈ Θ drawn from an interior prior

1Somewhat less related is a literature that explores how mistakes in learning can lead to behavioral biases (see
in particular the modeling of coarse learning in Jehiel (2005) that can give rise to overoptimism as shown in Jehiel
(2017)). By contrast, in our approach, the agent is constrained in the information she can store but is otherwise
behaving optimally given the constraint.

2The study of Rich and Wallis (2016) suggests that, in contrast with our baseline model but in accord with our
extensions in Section 6, information is aggregated across the rounds of deliberation.
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distribution π ∈ Δ(Θ). The state space Θ and the action set A are finite. The agent chooses a

signal structure—or equivalently a Blackwell experiment—p, where p is characterized by a family

of conditional signal distributions p(x | θ), θ ∈ Θ. The experiment generates a signal x from a

finite signal space X. The conditional signal distributions are fully mixed: p(x | θ) > 0 for all x,

θ. We allow the agent to choose among possibly several such Blackwell experiments and we let P
denote the set of experiments from which she chooses. We impose no restrictions on the set P of

the feasible experiments (other than the full-support of each p).

One interpretation is that each experiment p ∈ P is a particular reasoning approach available to

the agent. The agent can repeat the selected experiment arbitrarily many times, but she is unable

to aggregate the information across the repetitions. Each run of the experiment is a cognition

that exhausts the agent’s capacity dedicated to the problem being solved. Once the agent hits the

constraint at the end of the experiment, she can continue only after she unclogs her capacity by

amnesia.

The agent can condition the repetition of the experiment on the last observed signal. She

chooses a vector β = (βx)x∈X ∈ B = [0, 1]|X| \ {(0, . . . , 0)} of termination probabilities βx for each

signal realization x; we call β a termination strategy. The agent runs the experiment p for the first

time, receives signal realization x1 with probability p(x1 | θ) and terminates the reasoning with

probability βx1 . She restarts her reasoning with the complementary probability 1−βx1 , and receives

a signal realization x2 from a new run of the process p with probability p(x2 | θ), terminates with

probability βx2 or restarts with probability 1 − βx2 , and continues to rerun the primitive process

p until she terminates after a random number of repetitions of p; see Figure 1. When the agent

chooses having distinct βx for different x, then she implements the familiar idea of selective memory;

some facts and observations are easily forgotten whereas others are remembered and they trigger

choice. After the agent terminates the reasoning with a terminal signal x, she selects an action

a = σ(x) according to an action strategy σ : X −→ A.3 Let S be the set of all mappings from X

to A.

By excluding the termination strategy (0, . . . , 0) we prohibit the agent from avoiding to take

the decision a ∈ A. Since β �= (0, . . . , 0) and each feasible experiment p generates all signals with

a positive probability in each state, the decision process almost surely eventually terminates. Note

that we can accommodate agents who have an outside option by enlarging the action space.

The outcomes of distinct runs of p are conditionally independent. Thus, the probability that

the agent terminates after t repetitions of the experiment p resulting in the signal history xt =

(x1, . . . , xt) is

ρ
(
xt | θ; p, β) = βxtp(xt | θ)

t−1∏
l=0

(1− βxl
) p (xl | θ) . (1)

We let

r(a | θ; p, β, σ) =
∑
t

∑
xt:σ(xt)=a

ρ
(
xt | θ; p, β) (2)

3We do not allow for mixed action strategies since the optimum can always be achieved with a pure action strategy.
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O

x

x′

terminate with σ(x)

terminate with σ(x′)

p(x | θ)

1− βx

p(x′ | θ)

1− βx′

βx

βx′

Figure 1: For each (p, β, σ), the decision process is a Markov chain evolving on the agent’s states
of mind, with transition probabilities that depend on the payoff state θ. The chain begins in the
state of mind O and transits to states x ∈ X with probabilities p(x | θ). The process returns to O
with probability 1− βx, or terminates with choice of a = σ(x) with probability βx.

denote the probability that the agent who employs the experiment p, the termination strategy β,

and action strategy σ terminates with action a. We call r(p, β, σ) := (r(a | θ; p, β, σ))a∈A,θ∈Θ the

choice rule. The set of feasible choice rules is R(P) = {r(p, β, σ) : p ∈ P, β ∈ B, σ ∈ S}. Sometimes

we abuse notation, omit p, β, σ and write r(a | θ) for the probability of a in state θ under the rule

constructed by some p, β, σ.

The repeated-cognition problem is to select a feasible choice rule r that maximizes the expected

payoff:

max
r∈R(P)

∑
θ∈Θ,a∈A

πθr(a | θ)u(a, θ). (3)

The agent solving the repeated-cognition problem knows the prior π, payoff function u, and the

set P of the feasible processes p. The optimization in (3) can be an outcome of selective pressures

that favor successful decision procedures via cultural or biological evolution, or via competition of

firms differing in their internal procedures.

We focus on the benefit of the repeated cognition in that our baseline model abstracts from

the cost of time and is therefore applicable to agents who can repeat the basic cognition process

p quickly. The model extends to agents who exponentially discount future payoffs, and thus face

non-trivial cost of repeated cognition. We report such an extension in Section 6.2.

2.2 Examples

The first example is the simplest specification of the above baseline model. The reader may focus

on this elementary setting during the first reading of the paper.

Example 1 (elementary setting). The agent has access only to one statistical experiment: P = {p},
where p is an exogenous information structure that specifies conditional signal distributions p(x | θ).
In this case, the agent only chooses the termination probabilities βx, and the action strategy σ that

determines the action a = σ(x) chosen at each terminal signal x.
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Our baseline model, however, accommodates more complex cognitive processes that involve

remembering multiple signals, or partial aggregation of information over time. The accommodation

of these complex examples within our baseline model is nontrivial and postponed to Section 6.1.

Example 2 (imperfect information aggregation). This setting relaxes the agent’s inability to aggre-

gate information across the repetitions of her reasoning by endowing her with a finite set of memory

states that she can use to represent the signal histories. One interpretation of this example is that

the agent keeps track of the number of elapsed rounds, can count up to a finite number, and her

count of the rounds is allowed to be stochastic. The setting of this example builds on Hellmann

and Cover (1970) and Wilson (2014).

The agent is endowed with one Blackwell experiment μ(x | θ) with a finite signal space X

and, additionally, with a finite set M of the memory states m. After each run of the experiment

μ, the agent either terminates or continues with decision-making. If the agent continues, then

she transitions from the current memory state to a new memory state and reruns the statistical

experiment μ(x | θ). That is, the agent selects a (generalization of the) termination strategy:

γ : M × X −→ Δ(M ∪ {t}), where γ(m′ | m,x) is the probability that the agent in the memory

state m who has observed signal x in the last run of the experiment μ continues with the decision-

making and transitions to the memory state m′, and γ(t | m,x) is the probability that such an

agent terminates. We restrict γ(t | m,x) to be positive for all pairs m,x to ensure that the decision-

making almost surely eventually terminates. The terminating agent chooses action σ(m,x) that

depends both on the current memory state and on the signal acquired in the last run of μ. The

agent starts the decision-making in the memory state m0. A pair γ, σ induces a θ-dependent

Markov chain over the memory states that eventually terminates with choice σ(m,x), where m is

the last memory state and x is the last signal received. Let p(a | θ; γ, σ) be the probability that the

agent terminates with the choice a in state θ, and let Piia be the set of all stochastic choice rules

p that this agent can construct. She selects the choice rule from Piia that maximizes her ex ante

expected payoff.

Although, unlike in our baseline model, the agent of this example is endowed with nontrivial

memory, we show in Section 6.1 that the example can be accommodated within our baseline model

by a suitable choice of the set P of the experiments and of the signal space X.

Example 3 (partial forgetting). In this example, the agent comprehends up to N > 1 signals

sequentially drawn from the experiment μ(x | θ) with finite signal space X. She can discard some

of the accumulated data at any interim stage of the decision process. Unlike in the baseline model,

she is not restricted to discarding all her information.

Let H be the set of the signal histories h of length |h| ≤ N . The agent at a history h can

(i) terminate her decision-making; (ii) discard some of the information accumulated; or (iii), if

|h| < N , acquire a new signal. (i) An agent terminating at h chooses action σ(h). (ii) An agent

who discards some information transitions to a truncation h′ of her current history h.4 (iii) An

agent who acquires a new signal transitions to a history hx, where x is the new signal drawn from

4A truncation is obtained by deleting one or more last elements in h.
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μ(x | θ).
More precisely, the decision-making is governed by a pair of mappings γ : H×Θ −→ Δ(H ∪ {t})

and σ : H −→ A, where γ(h′ | h, θ) stands for the probability that the agent at history h in state θ

continues decision-making and transitions to h′, and γ(t | h, θ) is the probability of termination at

history h in state θ. The mapping γ is constrained to satisfy 1. γ(h′ | h, θ) is independent of θ if h′

is a truncation of h, 2. γ(t | h, θ) is independent of θ, 3. γ(hx|h,θ)
γ(hx′|h,θ) =

μ(x|θ)
μ(x′|θ) , 4. γ(h

′ | h, θ) = 0 unless

h′ is a truncation of h, or h′ = hx for some x ∈ X and |hx| ≤ N . Constraints 1 and 2 require the

agent to condition the decision to discard information or to terminate only on her current history

independently of the state. Constraint 3 allows the agent to expand her information set only by

running the experiment μ(x | θ). Constraint 4 restricts each step of information acquisition to one

draw from μ(x | θ) or to a partial discarding of the accumulated information. Let p(a | θ; γ, σ) be
the probability that the agent who employs (γ, σ) terminates with action a in the state θ. The

agent chooses γ and σ to maximize her ex ante expected payoff.

Again, we show in Section 6.1 that this example can be embedded within the baseline model

once the set P of the experiments and the signal space X are suitably specified.

3 Optimal cognition biases

We now derive a necessary optimality condition that the choice rule solving the repeated-cognition

problem must satisfy. We argue in Section 3.3 that, generically, the condition requires the agent to

engage in selective memory—that is, to ignore some signals more often than others.

3.1 Second-thought-free choice rules

We start with a definition of second-thought-free choice rules. If the agent’s decision process gener-

ates such a rule, then she has no incentive to rerun the process regardless of the action recommen-

dation with which the process terminates. Our main result below states that an optimal rule that

solves the repeated-cognition problem is second-thought-free.

Let A and Θ be finite action and state sets with generic elements a and θ. Let r be a generic

stochastic choice rule that specifies conditional probabilities r(a | θ) of each action a ∈ A in each

state θ ∈ Θ.

Definition 1. The choice rule r is second-thought-free with respect to the utility u if the agent

prefers each action recommended by the rule to a new run of the rule r. That is, for each action a

chosen with positive probability,

Eα[u(a, θ) | a1 = a] ≥ Eα[u(a2, θ) | a1 = a], (4)

where the expectations are with respect to the random variables θ and a2, and α(θ, a1, a2) = πθr(a1 |
θ)r(a2 | θ) is the joint probability distribution of the state and two actions consecutively recom-

mended by the rule r.
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Consider an agent whose decision process generates choice a with probability r(a | θ) in state

θ. The definition requires the agent who terminates her decision process with an action plan a to

weakly prefer the action a to forgetting a and choosing whichever action a new run of the decision

process will recommend. Although the definition allows for the strict preference against having

a second thought, the next lemma shows that (4) is always met with equality: If a choice rule

is second-thought-free, then the agent is indifferent between terminating and the second thought.

The lemma is a simple consequence of the law of iterated expectations.

Lemma 1. If a choice rule r is second-thought-free, then the condition (4) is met with equality for

each action a chosen with positive probability:

Eα[u(a, θ) | a1 = a] = Eα[u(a2, θ) | a1 = a]. (5)

All proofs are relegated to Appendix. We refer to (5) as the second-thought-free condition.

3.2 Optimality condition

Our main result follows. Note that the existence of the solution to the repeated-cognition problem

is not guaranteed since we do not impose any restrictions on the set P of the feasible experiments.

We prove existence for a binary setting in Section 4, where we impose more structure on the model.

Proposition 1. If a choice rule solves the repeated-cognition problem (3), then it is second-thought-

free, and satisfies (5).

To understand the statement, consider the optimal choice rule r∗ generated by a process that

consists of a random number of repetitions of a primitive cognition p. Once these repetitions of

p terminate with a terminal signal x and the agent is about to take an action a = σ(x), then,

according to the proposition, she must be indifferent between a, and running the process associated

with r∗ from scratch, where the new run of r∗ would involve new repetitions of p.

To prove Proposition 1, we first introduce an effective experiment s(p, β) and distinguish it from

the primitive experiment p. While p(x | θ) specifies the probability that one run of the experiment

p results in signal x, s(x | θ; p, β) is the probability that selective repetitions of p according to the

termination strategy β terminate with the signal x. Relative to the primitive probabilities p(x | θ),
the effective probabilities s(x | θ; p, β) are inflated for those signals x at which the agent terminates

with a high probability βx:

Lemma 2. The probability that the agent who employs a primitive experiment p and a termination

strategy β terminates with signal x in state θ is

s(x | θ; p, β) = βxp(x | θ)∑
x′∈X βx′p (x′ | θ) . (6)

The simple proof in the appendix exploits the stationarity of the decision process. The lemma

implies that s(p, β) and hence also r(p, β, σ) are homogeneous of degree zero with respect to β.
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Thus, since we abstract from the delay costs, for any optimal termination strategy β∗, αβ∗ for

α ∈ (0, 1) is optimal too, and it generates the same choice rule as β∗.
Lemma 2 can be used to rewrite the agent’s objective as an explicit function of the termination

strategy: The repeated-cognition problem is equivalent to

max
p∈P,β∈B,σ∈S

∑
θ∈Θ,x∈X

πθ
βxp(x | θ)∑

x′∈X βx′p (x′ | θ)u(σ(x), θ). (7)

Proposition 1 follows from the first-order condition with respect to the termination strategy β.

Somewhat counterintuitively, the second-thought-free condition imposes a non-profitability re-

quirement on a non-stationary deviation that is not feasible to the agent. The second-thought-free

condition imposed on the rule r(p∗, β∗, σ∗) induced by the optimal (p∗, β∗, σ∗) considers the agent

who has repeated the primitive experiment p∗ a stochastic number of times according to the strat-

egy β∗, and is about to terminate for the first time. The condition asks whether the agent can gain

by not terminating and by repeating the whole decision process r(p∗, β∗, σ∗) once and only once.

Since our agent is allowed to construct only rules based on stationary termination strategies, this

considered deviation is infeasible to the agent. The second-thought-free condition follows from a

marginal argument. Consider a marginal decrease of the termination probabilities βx for all signals

x such that σ(x) = a to a value βx(1− ε). This replaces a small measure of contingencies in which

the agent terminates the process r(p, β, σ) with action a with a longer process that consists of two

or more repetitions of r(p, β, σ). The probability of the replacement with k repetitions of r(p, β, σ)

is of the order of εk. Thus, the marginal optimality condition only compares the profitability of

the termination after the first run of r(p∗, β∗, σ∗) with its single repetition, and neglects all further

repetitions. At optimum, the agent is indifferent between the termination with a and the single

repetition of the optimal process.

Comment. Proposition 1 does not make reference to the set P of the feasible experiments.

Rather, the second-thought-free condition is a restriction imposed only on the choice rule r∗, on
the prior, and on the utility function. This makes our result relevant to those analysts who do not

know the set P of the feasible primitive cognition processes, but observe the joint distribution of

the actions and the payoff states.

3.3 Benefit of cognition biases

For an illustration of how the agent can benefit from a cognition bias that favors termination of

the decision-making after encountering a certain types of signal, we review a special case of our

elementary setting from Example 1. The agent’s task is to announce the realized value of the binary

state θ ∈ {0, 1}. She is rewarded with payoff u(a, θ) = 1 if her announcement a ∈ {0, 1} matches

the state θ, and she receives zero otherwise. The state θ is drawn from the uniform prior and the

agent has access only to one statistical experiment; P = {p} is a singleton. The available statistical
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experiment is asymmetric in that it satisfies

.9 = Prp(θ = 1 | x = 1) > Prp(θ = 0 | x = 0) = .6.

That is, x = 1 (resp. x = 0) is informative that the state θ is more likely to be 1 (resp. 0) and

signal x = 1 is more informative than x = 0. Let us fix the action strategy to be the identity

function σI(x) = x.5 With probability .2, the experiment delivers the signal x = 1, which provides

the agent with the correct advice in 90% of cases, whereas the somewhat less informative signal

x = 0 that is correct in only 60% of the cases is observed with probability .8.

Consider first an agent who always terminates immediately after the first observed signal:

(β0, β1) = (1, 1) = 1. For this agent, the choice rule r(p,1, σI) and the primitive experiment p

coincide, and the agent makes the correct choice with probability .2× .9 + .8× .6 = .66.

The choice rule r(p,1, σI) = p, however, is not optimal since it fails to be second-thought-free.

To verify this, consider the agent who has run the experiment p, receives the muddled signal x = 0,

and is about to conclude the decision-making with action a1 = 0. Before she implements a1, let

her contemplate having a second thought that involves running the experiment p once again and

implementing whichever action a2 = x2 the new run recommends. If a2 = a1, then the second

thought will have been inconsequential. If a2 �= a1, then it is more likely that θ = 1 than θ = 0

(because x = 1 is more informative than x = 0), and thus the agent benefits from switching her

choice from a1 = 0 to a2 = 1. Thus, overall, the agent who is about to terminate the decision

process r(p,1, σI) with action 0 benefits from having the second thought. By Proposition 1, the

process r(p,1, σI) is not optimal.

Generically, choice rules are not second-thought-free, and therefore, like in this example, the

agent who has access to a generic experiment p and has a generic utility u and a prior π benefits

from selective repetitions of the experiment p. In this example, due to the symmetry of the prior and

of the utility function, the second-thought-free rule must be symmetric: the optimal termination

strategy β∗ must satisfy

r(1 | 1; p, β∗, σI) =
β∗
1p(1 | 1)

β∗
0p(0 | 1) + β∗

1p(1 | 1) =
β∗
0p(0 | 0)

β∗
0p(0 | 0) + β∗

1p(1 | 0) = r(0 | 0; p, β∗, σI). (8)

To see why the optimal rule must be symmetric, recall that the second thought affects the payoff

only if the two runs of the decision process will result in the conflicting signals x1 �= x2. If the rule

was not symmetric, then the agent would fail to be indifferent between the two actions, and hence

would want to have a second thought after terminating with one of the two actions. Vice versa, when

the rule satisfies the symmetry (8), then both states are equally likely in this contingency, and thus

the agent is indeed indifferent between the two actions; the symmetric rule is second-thought-free.

The symmetry condition (8) implies that β∗
0/β

∗
1 = 0.15, and r(1 | 1; p, β∗, σI) = r(0 | 0; p, β∗, σI) =

0.79.6 The fastest such rule terminates immediately after the agent observes the highly informative

5This strategy is shown to be optimal in Section 4.
6The computation consists of finding p(x | θ) by reverting the specified posterior probabilities Prp(θ | x), and
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signal x = 1, but when the agent observes the muddled signal x = 0, then she is likely to hesitate:

she reruns her cognition p with probability 1− .15 = .85. Such a bias in her cognition inflates the

likelihood of her decision taking place at the information set x = 1 and this modifies the precisions

of posteriors under the effective experiment s(p, β∗). The probability of the correct choice after

terminating at either signal realization becomes 0.79, and thus the overall expected payoff increases

to 0.79 compared to only .66 under the unbiased strategy β = 1.

4 The binary setting

We extend the example studied in subsection 3.3 to cover the general setting with binary action

and state spaces. The agent chooses a ∈ A = {0, 1} and receives u(a, θ), where the payoff state θ is

drawn from an interior prior π ∈ Δ(Θ), and Θ = A. To avoid a trivial case, we assume that neither

action is dominant. Then, without loss of generality, u(a, θ) = uθ > 0 if a = θ and u(a, θ) = 0

otherwise. The set P of the feasible statistical experiments is finite, and each p ∈ P delivers a signal

x from a finite signal space X with probability p(x | θ). The agent chooses p ∈ P, the termination

strategy β = (βx)x∈X and action strategy σ : X −→ A to maximize the expected payoff as in (3).

The first result states that there exists a solution in which the agent ignores all but two signal

realizations of the chosen experiment p. That is, she always repeats the experiment upon encoun-

tering all but two signals. Roughly, the result follows because it is advantageous to consider only

the most informative signal realizations for each state.7

Lemma 3. There exists a solution in which the termination probability βx is positive for at most

two signal values x ∈ X.

Based on the lemma, we can, without loss of generality, restrict the signal space X to be binary,

and identify it with the action and state spaces, X = A = Θ. Again without loss of generality, we

choose signal labels in such a way that each experiment p ∈ P satisfies the monotone likelihood

ratio property: p(1 | θ)/p(0 | θ) increases in θ. We continue to assume that p(x | θ) > 0 for all x

and θ.

Recall that σI is the identity function, and let the agent employ experiment p and the action

strategy σI . The next lemma characterizes the set Rp,σI = {r(p, β, σI) : β ∈ B} of the feasible

choice rules that such an agent has access to. To characterize this set, we introduce a parameter

that we dub perceptual distance between states 0 and 1 under the experiment p:

dp =
p(1 | 1)p(0 | 0)
p(0 | 1)p(1 | 0) .

The perceptual distance is a summary statistic of the information structure of the experiment p.

The larger it is, the more p reliably discriminates between the two states. The monotone likelihood

solving (8) for β∗
0/β

∗
1 .

7This insight exploits the assumption of perfect patience, since impatient agents would trade off informativeness
against delay costs. We conjecture that when exponential discounting is considered, then the result that the agent
ignores all but two signal realizations continues to hold for sufficiently patient agents and generic signal structures.
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Figure 2: Each point in [0, 1]2 on this graph corresponds to a choice rule. The depicted curves are
the sets Rp,σI of the choice rules constructible from experiments p and action strategy σI . The thick
curve corresponds to the experiment p with the maximal perceptual distance d. Since the objective
is linear in the choice rule, the indifference curves are downward sloping lines. The dashed line is
the tangential indifference curve. The dot depicts the solution of the repeated-cognition problem.

property of each p implies that dp > 1. The next lemma states that the perceptual distance is

preserved under any termination strategy β.

Lemma 4. Rp,σI = {r : r(1 | 1)r(0 | 0) = dpr(1 | 0)r(0 | 1)}.

That is, a rule r can be constructed from p if and only if it preserves the perceptual distance:
r(1|1)r(0|0)
r(0|1)r(1|0) = dp (or if it always selects a same action). By controlling the termination strategy β,

the agent trades off the likelihoods r(0 | 0; p, β, σI) and r(1 | 1; p, β, σI) of the correct choice in the

states 0 and 1, respectively. See Figure 2. The set Rp,σI of rules accessible from p is compact.

Thanks to the chosen labeling of the signals, the agent can equate her choice to the observed

signal without a loss:

Lemma 5. For any rule r(p, β, σ) there exists β′ such that the rule r(p, β′, σI) achieves at least as

high expected payoff as r(p, β, σ).

The solution to the repeated-cognition problem in the binary setting exists since the objective

is continuous in the choice rule and the agent optimizes on the compact set
⋃

p∈P Rp,σI of the rules.

Let p be the experiment with the maximal perceptual distance: p ∈ argmaxp∈P dp, and let

d = maxp∈P dp. In line with the intuition that the agent should go for the most informative

experiment, we establish:

Lemma 6. There exists a solution to the repeated-cognition problem in which the agent employs

the experiment p with the maximal perceptual distance.
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The last lemma implies that all details of the set P relevant for the solution are summarized in

the one-dimensional statistic d that is independent of the payoff function u.8

We are now ready to solve the binary setting. The optimal effective choice rule r∗(a | θ) =

r(a | θ; p, β∗, σI) consists of four unknown probabilities and it is determined by four conditions: the

second-thought-free condition (5), the feasibility condition from Lemma 4, and two normalization

conditions. Let parameter R = π1u1
π0u0

measure the relative a priori attractiveness of action 1.

Proposition 2. 1. When R ≥ d, then the agent always chooses action 1;

2. when R ≤ 1/d, then the agent always chooses action 0;

3. when R ∈ (1/d, d), then the agent chooses both actions with positive probabilities and

r∗(1 | 1) = dR−
√
dR

(d− 1)R
, r∗(0 | 0) = d−

√
dR

d− 1
, (9)

β∗
1

β∗
0

=
dR−

√
dR√

dR−R

p(0 | 1)
p(1 | 1) . (10)

When the ex ante attractiveness of one of the actions is too strong relative to the precision of

the best available experiment, then the agent ignores the signals generated by the experiment and

always chooses the ex ante attractive action. This arises when the linear indifference line in Figure

2 is steeper than the slope of the set Rp,σI at the corners. These slopes at the corners are −d and

−1/d, which implies the range (1/d, d) of R for which the optimal rule is interior. In Section 6.1

we show how Proposition 2 extends to cover the agents endowed with more elaborate memory.

The solution of the repeated-cognition problem has natural comparative statics reminiscent

of wishful thinking. As the ex ante attractiveness of a state increases, the agent searches more

intensively for evidence in support of this state, her relative performance in this state improves,

and the relative speed of the decision-making in this state increases. Let fθ =
∑

x βxp(x | θ) stand
for the decision rate in state θ; it is the per-round probability that the agent in state θ terminates

the decision-making. The response time in state θ is geometrically distributed with the expected

response time 1/fθ.

Corollary 1. Let R ∈ (1/d, d). Then,

1. relative search intensity β∗
1/β

∗
0 for signal 1 increases with R;

2. for each state θ, the relative likelihood r∗(1|θ)
r∗(0|θ) of action 1 increases with R;

3. relative decision rate, f1/f0, increases with R;

4. for fixed rewards uθ, posterior probabilities of the state 1, Prr∗(θ = 1 | a = 1) and Prr∗(θ =

1 | a = 0), increase with the prior probability π1 of the state 1.
8Such summary statistic of P continues to exist when 2 < |X| < ∞. For any pair of signal realizations (x, x′)

and an experiment p, let dx,x′,p = p(x|0)p(x′|1)
p(x|1)p(x′|0) . Then, d is the maximum of dx,x′,p over all ordered pairs (x, x′) and

experiments p.
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5 Behavioral applications

This section presents four behavioral effects generated by our model. We demonstrate the first three

effects—confirmation bias, speed-accuracy complementarity, and overweighting of rare events—in

the binary setting from Section 4. The fourth effect—salience of distinct states—will be presented

in a setting with multiple states.

5.1 Confirmation bias

Psychologists and economists distinguish at least three mechanisms leading to confirmation bias:

(i) People search for evidence selectively, targeting the evidence type in accord with their priors,

e.g. Nickerson (1998); (ii) they selectively memorize and recall the data supporting their priors,

e.g. Oswald and Grosjean (2004); and (iii) they selectively interpret ambiguous evidence, e.g. Rabin

and Schrag (1999) and Fryer et al. (2016). We focus on the first two mechanisms and interpret

them in light of our optimal repeated-cognition result.

The next result provides a simple illustration of why some form of confirmation bias is con-

strained optimal. We consider here an agent who has access to only one symmetric primitive

experiment.

Corollary 2. When action 1 is a priori more attractive, R ∈ (1, d), and the unique primitive

experiment is symmetric, p(1 | 1) = p(0 | 0), then the agent searches relatively more intensively for

signal 1: β∗
1 > β∗

0 .

To see how the above result relates to confirmation bias, consider an agent whose task is to

announce the realized state of the world: she receives reward u1 = u0 = 1 if she makes the correct

announcement and receives 0 otherwise. The agent finds the state θ = 1 a priori more likely than

the state 0, π1 > π0.

Consider in this setting the suboptimal decision process that terminates immediately after the

first run of the experiment and chooses the action equal to the observed signal: β0 = β1 = 1,

σ = σI . We first observe, paralleling an argument made in subsection 3.3, that such an unbiased

process is suboptimal. To see this, assume that the agent has observed the a priori unlikely signal

0. Such a surprised agent is better off by restarting the decision-making instead of terminating

with action 0, since if the new run of the process concludes with signal and action 1, then the

switch from action 0 to 1 is beneficial. This is because when the experiment p is symmetric, then,

conditional on the two conflicting signals, the a priori more common state 1 is relatively more likely.

The agent benefits from the second thought whenever she receives the surprising recommendation,

and thus will deviate from the uniform search in favor of the a priori likely signal 1.

The optimal strategy resembles the natural process in which the selective memory gives rise

to confirmation bias. We consider the fastest optimal strategy, letting β∗
1 = 1. When the agent

observes signal 1 that confirms her prior belief, then she terminates and immediately announces the

state 1. But if she is surprised, observing signal 0 that contradicts her prior, then she discards the
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signal with positive probability β∗
0 and repeats the experiment. Although finding the exact optimal

value β∗
0 may be difficult, the fact that double-checking one’s own reasoning when one arrives at

a surprising conclusion is a common practice suggests that people are able to deviate from the

unbiased suboptimal process in the payoff improving direction.

Let us relate the above effect of confirmation bias to the choice of media outlets. Let each state

of the world θ ∈ {0, 1} generate an infinite sequence of signals xk iid. drawn from the conditional

distribution p(x | θ). The agent, whose task is to identify the realized state, can comprehend only

one such signal realization and she can access it only via a media outlet. The media outlets differ

in their editorial policies (βx)x. Each outlet draws a first signal x1, terminates and reports x1 to

its readers with probability βx1 , and with the residual probability 1 − βx1 the outlet redraws the

new signal x2, etc, until the outlet terminates its search and reports the last observed signal. The

reader of the outlet with an editorial policy β observes signal x in the state θ with probability

s(x | θ; p, β) = βxp(x|θ)∑
x′ βx′p(x′|θ) .

As in Gentzkow and Shapiro (2006), our agent prefers outlets biased in favor of her prior

belief; she prefers an editorial search policy β that is biased in favor of the signal realization that

confirms the agent’s own prior. For example, a voter a priori favouring, say, Trump, who has time

to read only one headline in the media outlet of her choice, will optimally choose an outlet that

persistently searches for evidence favorable to Trump, and that will report encountered evidence

that is unfavorable to Trump only with a relatively smaller probability.

The source of the media bias in Gentzkow and Shapiro is reputation: Their agents evaluate

media outlets confirming their prior beliefs as being relatively reliable information sources. In our

case, all outlets are ex ante identical in that they have access to the same signal-generating process

and thus reputation does not play a role. Rather, in our case, the demand for the prior-confirming

outlets is driven by the information-aggregation friction. When the reader’s attention span allows

the outlets to report only one signal, then the optimal editorial policy favors the signal that advises

the reader correctly in the a priori more likely state, since this state has a large weight in the

reader’s a priori objective.9

5.2 Speed-accuracy complementarity

The binary setting generates the speed-accuracy complementarity effect—a stylized fact stating

that delayed choices tend to be less accurate than speedy choices; see the psychology studies

of Swensson (1972) and Luce (1986). We establish this effect in the setting from the previous

subsection: u0 = u1 = 1, π1 > π0, considering again a symmetric primitive signal distribution,

p(1 | 1) = p(0 | 0) > 1/2.

Let ϕ(θ, a, t) be the joint probability distribution of the state θ, chosen action a, and the reaction

time t generated by the solution (p, β∗, σI) of the repeated-cognition problem.

Corollary 3. The probability Prϕ(a = θ | t) of the correct choice decreases with response time t.

9See also Calvert (1985), Suen (2004), and Che and Mierendorff (2016) for constrained-optimal media-bias models.
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Due to the stationarity of the decision process, the probability of the correct choice conditional

on the payoff state is independent of the reaction time: Prϕ(a = θ | θ, t) = Prϕ(a = θ | θ). At

optimum, this conditional probability of the correct choice is larger in the a priori more likely state 1

than in the state 0, reflecting the relative weights of the two states in the a priori objective. Overall,

unconditionally on the payoff state, the probability Prϕ(a = θ | t) of the correct choice depends on

the response time because t correlates with θ. A long response time indicates that the agent has

repeatedly encountered the a priori surprising signal x = 0 and has hesitated to terminate. Hence,

conditional on large t, the likelihood of the a priori surprising state becomes high. The longer the

agent has hesitated, the more likely it is that she is facing the a priori surprising state in which she

is making more mistakes.

Corollary 3 is in line with empirical evidence from Ratcliff and McKoon (2008), who asked lab

participants to report a binary state visually encoded by a pattern of moving dots on a computer

screen. We conceptualize the sequence of the observed dot movements as a sequence of the signals

generated by a primitive experiment p in our model. Ratcliff and McKoon’s design exhibits a

symmetry that justifies the symmetry p(1 | 1) = p(0 | 0) assumed here. The experiment consisted

of two treatments that differed in the prior distribution of the two states. The prior in each

treatment was announced to participants in instructions. In line with our predictions, the posterior

probability that the participant’s announcement is correct is higher when she announces the a

priori expected state than when she makes the surprising announcement. The announcements of

the surprising state are stochastically delayed relative to the announcements of the a priori expected

state. Thus, late announcements are relatively less precise in Ratcliff and McKoon’s experimental

data in line with Corollary 3.

Such experimental evidence is at odds with the predictions of the influential sequential-learning

model of Wald (1945). Wald’s agent faces an opportunity cost of time, and learns about a binary

state from a sequence of weakly informative signals. The optimal decision procedure terminates

once the agent reaches one of the two absorbing posterior beliefs. The optimal absorbing posteriors

are independent of the agent’s prior (as long as the prior is not too extreme), and when the incentives

are symmetric, as in Ratcliff and McKoon’s experiment in which participants were simply asked to

announce the correct state, the two absorbing posteriors have the same precision.10 The posterior

precision is therefore independent of the response time in Wald’s model. These predictions do not

match the experimental findings of Ratcliff and McKoon. By contrast, our model generates both

the speed-accuracy complementarity, and the empirical monotonicity relationship between the prior

and the posteriors (Statement 4 of our Corollary 1).

Fudenberg et al. (2015) have recently proposed a generalization of Wald’s model by adding an

extra uncertainty about the size of the stake to the sequential-sampling problem. They obtain the

speed-accuracy complementarity because their agent interprets long spells of inconclusive learning

10See Morris and Strack (2017) for the behavioral equivalence between Wald’s problem and the rational inattention
problem with a posterior separable cost in binary problems. The independence of the optimal absorbing posteriors
from the prior in Wald’s problem is equivalent to the analogical independence of the posteriors from the prior in the
rational inattention problem in Caplin et al. (2017).
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as an indication that the stake is small, thereby leading her to optimally terminate the process

sooner with relatively imprecise posteriors. The authors’ proposed mechanism differs from ours.

While their agent “gives up”after long delays, in our model long delays indicate that the agent has

encountered the surprising state in which her decision strategy is less well-adapted. Since there

is no uncertainty about the magnitude of the stakes in Ratcliff and McKoon’s experiment, the

model of Fudenberg et al. does not explain the speed-accuracy complementarity observed in this

experiment.

Che and Mierendorff (2016) consider an alternative learning process according to which the agent

learns about a binary state from evidence arriving at a Poisson rate. They study the correlation

between the accuracy and the response time, and obtain for some parameter specifications that

conditional on one particular action being made, the probability that this action is correct declines

with time. It should be noted that their result does not aggregate the mistake rates over all possible

actions, making the connection to Ratcliff and McKoon less clear.

Ratcliff and McKoon’s data also contain evidence suggestive of information aggregation that is

abstracted from in the elementary setting studied here. When Ratcliff and McKoon increase the

noise in the visual encoding of the state, the response times get longer, which indicates that the

participants compensate the poor information source with aggregation of longer signal sequences.

We show in Section 6 that our solution of the binary setting and all the related effects extend to

agents who partially aggregate information, although we abstract from the trade-off between longer

aggregations and the aggregation cost.

5.3 Overweighting of rare events

As in previous subsections, we consider a task consisting of state recognition (i.e. u(a, θ) = 1 if

a = θ and u(a, θ) = 0 otherwise). In contrast to previous applications, we assume that the two

states θ ∈ {0, 1} are equally likely, but the distribution of the signal referred to as event in this

section x ∈ {0, 1} is asymmetric across states. Specifically, the probability of x = 1 in the state of

the world θ is ρθ ∈ (0, 1) and the probability of x = 0 is 1− ρθ.

Let us assume, essentially without loss of generality, that ρ0 < ρ1 < 1 − ρ0.
11 The a priori

probability of event x = 1 is (ρ0 + ρ1)/2 < 1/2, and thus the event x = 1 is relatively rarer than

x = 0. We observe that at the optimum, the agent is relatively more likely to discard the more

common event x = 0 in agreement with Kahneman and Tversky (1979), who observe that agents

tend to overweight rare events.

Corollary 4. At the optimum, the agent is biased in favor of the rare event x = 1: β∗
1 > β∗

0 > 0

(and her guess of the state equals the observed signal, i.e. σ = σI).

To illustrate the result, consider an agent who is forming her probability belief over a flight

accident. The accident probability per flight in the safe state of the world is 10−6, whereas it is

10−5 in the dangerous state of the world, and both states are a priori equally likely. The agent can

11We can always achieve this by relabeling the states θ and the signals x, unless ρ0 = ρ1 or ρ0 = 1− ρ1.
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sequentially observe arbitrarily many past flight outcomes, but cannot aggregate the information,

and recalls only the last observed flight. She guesses that the state of the world is dangerous if and

only if the last observed flight is eventful.

Consider first an agent who always terminates right after the observation of the first data-

point. Such an agent benefits from a “second thought” whenever she observes an uneventful

flight: Either the second observed flight will be uneventful, in which case the second thought

will have been inconsequential, or the redrawn flight will be eventful and the agent will switch her

assessment from the safe to the dangerous state. Such a switch is beneficial since conditional on two

contradicting data-points the dangerous state is relatively more likely. More generally, conditional

on two contradicting data-points, the state θ for which ρθ is closer to 1/2 is relatively more likely,

since it is relatively likely that such a state generates contradicting signals. Thus, relative to

the immediate termination strategy, the agent will benefit from discarding the uneventful flight

observations with positive probability.

For the assumed accident rates, the optimal ratio of the search intensities is β∗
1/β

∗
0 ≈ 316, 000

where the signal x = 1 stands for the eventful flight observation. Thus, the agent’s search for data

is heavily biased towards the rare accidents. This strategy generates probabilities of the correct

state identification approximately equal to 0.76 in both states of the world. Since the immediate

termination strategy identifies the correct state with a probability equal approximately to half, the

bias significantly improves the payoff.

5.4 Salience

Bordalo, Gennaioli, and Shleifer (2012) interpret salience as directed attention focus and quote the

popular work by Daniel Kahneman (2011):

“Our mind has a useful capability to focus on whatever is odd, different or unusual.”

The quote states a causal relation between the two features of the salient phenomena: These

are (i) odd, different or unusual, and because of (i), people benefit from (ii) focusing their attention

on such phenomena. Here, we confirm Kahneman’s intuition within our proposed framework. Our

microfoundation of the salience effect is related to the insight emerging in psychological research

on visual salience. Itti (2007) conceptualizes the visual salience effect as attention allocation to a

subset of the visual field that is “sufficiently different from its surroundings to be worthy of [one’s]

attention.”Similarly, in our model, a payoff state is salient if it stands out sufficiently from similar

states to be worthy of the focus of the agent’s information search.

As before, the agent faces a perceptual task that requires her to announce a random state θ. She

is endowed with a primitive perception technology that generates a perceived value θ′ of the state.

The primitive perception is informative but noisy: The perceived value θ′ equals the true state θ

with a high probability, but mistakes, θ′ �= θ, occur sometimes. We view the primitive perception

technology as a black-box model of a physiological sensor that generates a noisy first impression

θ′ of the true state θ. The agent can use the sensor repeatedly but is not able to aggregate the
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information. She conditions the repetition of the sensor’s use on the most recent perception and

announces the terminal perception.

We formalize this perception task as follows. The agent makes an announcement a ∈ A = Θ,

where 2 < |Θ| < ∞, and receives payoff u(a, θ) = 1 if her announcement is correct, a = θ,

and u(a, θ) = 0 if a �= θ. The prior is uniform. Each use of the agent’s sensor generates a

signal/perception θ′ ∈ X = Θ, with conditional probabilities p(θ′ | θ). We make two assumptions

on p:

Symmetry : p(θ′ | θ) = p(θ | θ′).
Sufficient precision: p(θ | θ) > p(θ′ | θ) for all θ �= θ′.

For two states θ1 and θ2, we say that θ1 is more distinct than θ2 if for each state θ3 �= θ1, θ2,

p(θ1 | θ3) < p(θ2 | θ3). Suppose for illustration that the perceptual task involves recognition of

a color from a set {azure, indigo, red}. Intuitively, the red color stands out of this set, and this

is captured by the above definition. Assume that the two shades of blue are similar in that the

agent’s first impression confuses them in 10% of cases, p(azure | indigo) = p(indigo | azure) = 0.1,

but p(θ | red) = p(red | θ) = 0.01 for θ ∈ {azure,indigo}. Then, the red color is more distinct

according to our definition than either of the two blue shades.

To simplify the exposition, we assume that the agent uses the identity action strategy σI ; she

announces the state equal to her last perception. We also make a regularity assumption that the

optimal termination probabilities βx are positive for all x ∈ Θ.12 Let r∗ = r(p, β∗, σI) be the

optimal feasible choice rule.

Proposition 3. If state θ1 is more distinct than state θ2, then the agent’s terminal perception is

biased in favor of the more distinct state θ1 at the expense of the less distinct state θ2:

r∗(θ1 | θ2) > r∗(θ2 | θ1).

Since the primitive perception technology p is symmetric by assumption, the asymmetry in

favor of the distinct state of the optimal terminal perception r∗ is driven solely by the optimization

of the termination strategy. To gain the intuition for the salience of the distinct states, consider a

state θ∗ that is similar to many other states and an agent who always terminates the process after

the first round: β = 1. This agent is relatively uninformed whenever she forms perception θ∗, since
the true state differs from θ∗ with a sizeable probability. The agent with the indistinct perception

θ∗ would thus benefit from “having a second thought”— i.e., from running the primitive perception

formation process once again. The optimal termination strategy involves repeating the primitive

process with relatively high probability whenever the agent forms a perception of an indistinct

state, and this shifts the terminal perception in favor of the distinct states.

12This regularity assumption must be satisfied when p(θ | θ) is sufficiently close to one for each θ, since then any
strategy for which some βx is zero is dominated by the strategy that immediately terminates and announces the first
impression.
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6 Robustness checks

We explore here the robustness of our results to an increase in the memory capacity of the agent

and to discounting. The first subsection returns to the examples 2 and 3 from Section 2.2 in which

the agent is endowed with nontrivial memory and aggregates many observed signals. We show that

the two examples are special cases of our baseline model, and hence the optimal rules solving them

are second-thought-free. The second subsection accommodates discounting.

6.1 Sophisticated decision processes

Examples 2 and 3 from Section 2.2 seemingly violate our baseline model in that the agent can ag-

gregate information across signal realizations. We show, however, that these examples are formally

special cases of our baseline model appropriately specified.

Recall that Piia is the set of all stochastic choice rules that the agent from example 2 (imperfect

information aggregation) can construct. Consider our baseline model with the signal space X = A

and the set of the feasible primitive experiments P = Piia. The set R(Piia) = {r(p, β, σ) : p ∈
Piia, β ∈ B, σ ∈ S} is then a set of the stochastic choice rules that can be constructed as follows. The

agent runs any process p ∈ Piia, and observes a signal/action recommendation a with probability

p(a | θ). She terminates with probability βa, according to the termination strategy β = (βa)a∈A,
and upon the termination chooses an action a′ = σ(a), where σ ∈ S is any mapping A −→ A. She

reruns the process p with probability 1− βa, observes a new action recommendation generated by

p, et cetera, until she terminates after a stochastic number of repetitions of the process p.

As it turns out, no new choice rules beyond those from Piia can be constructed by these selective

repetitions. This follows because the repetitions of the rule p ∈ Piia with the termination strategy

β can always be replicated with an appropriate choice of a different rule in Piia that whenever p

would terminate with a restarts the process from scratch with probability 1− βa. Formally:

Lemma 7. R(Piia) = Piia.

According to the lemma, example 2 is the special case of our baseline model with P = Piia,

since in such a specification of the baseline model, the set of the feasible rules coincides with those

in the example. In particular, the optimal choice rule p∗ ∈ Piia solving the example coincides with

the optimal rule r∗ ∈ R(Piia) solving this specification of the baseline model.

The repeated-cognition problem with P = Piia is purely formal in that the optimal termination

probabilities β∗
x = 1 for all x ∈ X = A, and thus the agent conducts the optimal process p∗ ∈ Piia

only once and terminates. Nevertheless, the observation that p∗ solves the repeated-cognition

problem has an important implication.

Corollary 5. The choice rule that solves example 2 (imperfect information aggregation) is second-

thought-free.

Wilson (2014) differs from this example mainly in that she assumes exogenous termination

probabilities. By adding optimization over the terminations to the model of Wilson, we gained
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the partial characterization of the optimal choice rule without fully solving the problem: One can

conclude that the optimal choice rule is second-thought-free without analyzing the optimal use of

the memory states.

The same argument applies to example 3 (partial forgetting). As with the previous example,

let R(Ppf ) be the set of the feasible choice rules in our baseline model with the set of the feasible

primitive experiments P identified with Ppf .

Lemma 8. R(Ppf ) = Ppf .

Thus, again, the rule p∗ ∈ Ppf solving example 3, and the optimal rule r∗ ∈ R(Ppf ) coincide,

and thus the rule solving the example must be second-thought-free.

Corollary 6. The choice rule that solves example 3 (partial forgetting) is second-thought-free.

Importantly, when the action and state sets are binary (while the signal space can be arbitrary),

then Proposition 2 derived above for memoryless agents applies to the sophisticated agents from

examples 2 and 3. The optimal choice rules solving the examples simply satisfy Proposition 2 with

d set to the maximal perceptual distance among the rules p in Piia and Ppf , respectively.

6.2 Costly delay

Our baseline model abstracts from the cost of time in that the agent is only concerned with how

the repetitions of the signal extraction affect the correlation of the signal with the state. We now

incorporate discounting.

We continue to study the baseline model from Section 2.1, except that the agent discounts

future payoffs exponentially with the discount factor δ ∈ (0, 1). To accommodate discounting, we

redefine the choice rule induced by the experiment p, the termination strategy β and the action

strategy σ as follows.

rδ(a | θ; p, β, σ) =
∑
t

∑
xt:σ(xt)=a

δtρ
(
xt | θ; p, β) , (11)

where ρ
(
xt | θ; p, β) defined in (1) is the conditional probability of the signal history xt. That is,

rδ(a | θ; p, β, σ) is the discounted probability of the choice of action a in the state θ. When δ = 1,

then (11) coincides with our baseline definition of the choice rule r(p, β, σ).

The set of the feasible discounted rules is Rδ(P) = {rδ(p, β, σ) : p ∈ P, β ∈ B, σ ∈ S}. The

discounted repeated-cognition problem is to select a feasible rule rδ that maximizes the expected

payoff:

max
rδ∈Rδ(P)

∑
θ∈Θ,a∈A

πθrδ(a | θ)u(a, θ), (12)

where discounting is incorporated in the definition of the feasible rules.

The next result generalizes the second-thought-free condition. Let r∗δ = rδ(p
∗, β∗, σ∗) be the

choice rule solving the discounted repeated-cognition problem (12).
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Figure 3: Confirmation bias with discounting. Action 1 is a priori more attractive: π1u1 = 10×π0u0.
The primitive experiment is symmetric: p(1 | 1) = p(0 | 0) = .9. The agent terminates immediately
when she receives signal 1, β∗

1 = 1. When δ > .53, then the agent is biased towards state 1: when
she encounters signal 0, then she terminates the decision-process with a probability only β∗

0(δ) < 1
(the full curve). The dotted line is β∗

0/β
∗
1 from the baseline model without discounting.

Proposition 4. If the termination strategy β∗
x ∈ (0, 1) is interior for all x such that σ∗(x) = a,

then ∑
θ∈Θ

πθu(a, θ)r
∗
δ (a | θ) = δ

∑
θ∈Θ,a′∈A

πθu(a
′, θ)r∗δ (a

′ | θ)r∗δ (a | θ). (13)

The condition has the same interpretation as the second-thought-free condition in the absence of

discounting. The left-hand side is the payoff for following the optimal decision process r∗δ summed

up across all contingencies that terminate with choice of a. The right-hand side is the payoff that

the agent would get across the same contingencies if she restarted the decision process r∗δ instead

of the termination.

For illustration, we now revisit the confirmation bias application from Section 5.1 with an

impatient agent. We will find that, unless discounting is too strong, the impatient agent chooses

qualitatively the same strategy as the patient one, although the impatient agent speeds up her

decision-making by choosing larger termination probabilities.

The setting is as follows. The agent chooses a ∈ {0, 1} and receives u(a, θ) = uθ > 0 if a = θ,

and zero reward otherwise. Action 1 is a priori more attractive than action 0; π1u1 > π0u0. The

agent has access to a single primitive experiment p that generates signals in X = {0, 1}. The

experiment is symmetric with probabilities p(1 | 1) = p(0 | 0) = α > 1/2.

Proposition 5. The agent chooses the action equal to the last observed signal. She terminates her

decision-making immediately after she encounters signal x = 1: β∗
1 = 1. When δ ∈

(
1

α+(1−α)R , 1
]
,

then the agent who receives signal x = 0 terminates with interior probability β∗
0 ∈ (0, 1) that

decreases in δ. When δ ∈
(
0, 1

α+(1−α)R

)
, then the agent terminates immediately: β∗

0 = β∗
1 = 1.
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6.3 Discussion

The second-thought-free condition is related to Piccione and Rubinstein (1997), who show that

the ex ante optimal decision strategy of a forgetful decision-maker can be thought of as a team

equilibrium of multiple selves, with each self representing the decision-maker at an information set.

Each self takes the strategies of the other selves as given, internalizes the other selves’ strategies in

her Bayesian inference, and maximizes the decision-maker’s payoff. Our agent is forgetful in that

she conditions terminations only on the last signal, not on the signal history. As in Piccione and

Rubinstein, the optimal termination strategy is a team equilibrium in the sense of the modified

multi-self equilibrium defined there. The self who has received a signal makes inferences about the

state both from the the observed signal and from the fact that the previous selves (if any) have

not terminated. Given her equilibrium posterior belief, each self decides whether to terminate with

the action that is optimal under the formed posterior or to delegate the decision to the next self.

The equilibrium is mixed, with each self indifferent between terminating and passing the decision

forward.

Meyer (1991) studies optimal biases in a sequential-learning problem of an agent who receives a

sequence of binary signals and, unlike our agent, can aggregate the sequence of signals. She analyzes

the best signal structure maintaining that the signal realization is binary. Her main insight is that

some asymmetries in the signal structure are optimal. This can easily be understood in a two-

period version, as symmetry of the conditional signal distributions would imply that the second

signal is worthless. Although the observation that asymmetries in the information structure may

be optimal arises both in her and our framework, the two papers study distinct optimizations.

While our agent controls termination probabilities in a stationary decision process, Meyer’s agent

controls the choice of a Blackwell experiment in each round of a non-stationary process.

In the above setting, we have assumed that the agent chooses optimally the action strategy

σ : X → A. In some contexts, the action strategy may instead be hardwired by automatic

responses and possibly suboptimal. We note that as long as the agent can optimally adjust the

termination strategy β, the second-thought-free condition continues to hold since it follows from

the first-order condition with respect to the termination strategy only. Behavioral insights such as

those highlighted in Section 5 would be unaltered in such environments.

7 Summary

Agents, who cannot comprehend all facts available to them, benefit from selective attention. We

show that agents can implement a targeted information search in a process that resembles the

natural phenomenon of hesitation. Like a hesitant person, the agent can, conditional on the action

contemplated, decide whether she implements the action or whether she will have a second thought,

and run the cognition process once more. Such hesitation can be productive, despite consisting

of repetitions of the same stochastic cognition process. By conditioning the probability of the

repetition on the conclusion of the reasoning, the agent controls the correlation of her terminal
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conclusion and the payoff state. The optimal decision process arising in our model exhibits natural

hesitation patterns: The agent will have second thoughts—that is, she will repeat her cognition—

whenever the expected payoff for the currently favored choice is inferior to the expected payoff

for continuing decision-making. At optimum, the agent terminating the decision-making must be

indifferent between terminating with the currently contemplated action, and repeating the process.

In a sense, the condition formalizes the concept of a reasonable doubt. Abstracting from many

considerations such as information aggregation, a jury deciding a trial under common law should

be, if using the optimal decision procedure, indifferent between declaring a verdict and announcing

a hung jury and initiate retrial.

Let us conclude by reviewing the limitations of our main result. The central assumption—

the ability of the agent to freely repeat her decision process—may fail for several reasons. One

reason is that the agent may only have access to a limited data set that constrains her to a

finite number of repetitions of the primitive decision process, making the optimal termination

strategy non-stationary. Another complication arises if the outcomes of distinct runs of the same

cognition process are not conditionally independent as assumed in our model; this may arise if some

cognition errors are systematic and are likely to emerge in distinct repetitions of the cognition. We

conjecture that the second-thought-free condition holds in such a case, with the agent internalizing

the correlations between the cognition runs.

A Proofs

A.1 Proofs for Section 3

Proof of Lemma 1. Suppose by contradiction that (4) holds with strict inequality for some a chosen

with positive probability. Then, Eα [Eα [u(a1, θ) | a1]] > Eα [Eα [u(a2, θ) | a1]] , and applying the

law of iterated expectation, this simplifies to Eα [u(a1, θ)] > Eα [u(a2, θ)]. This establishes the

contradiction since a1 and a2 are conditionally iid. draws generated by the rule r.

Proof of Lemma 2. The effective experiment s(p, β) satisfies a recursion

s(x | θ; p, β) = βxp(x | θ) +
∑
x′∈X

(1− βx′) p
(
x′ | θ) s(x | θ; p, β),

where the first summand is the probability that the agent terminates with signal x after the first run

of the primitive experiment p, and the second summand is the probability that the agent continues

with decision-making after the first run of p and terminates with x later. Solving for s(x | θ; p, β)
gives (6).

Proof of Proposition 1. Let (p∗, β∗, σ∗) solve the repeated-cognition problem. Consider an action a

chosen with a positive probability. There must exist x such that σ∗(x) = a and β∗
x > 0. Therefore,

the constraint βx ≥ 0 is not binding for this x, and the first-order condition of problem (7) with
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respect to βx is:

∑
θ∈Θ

πθ
s (x | θ; p∗, β∗)

β∗
x

u(a, θ)−
∑

θ∈Θ,x′∈X
πθs

(
x′ | θ; p∗, β∗) s (x | θ; p∗, β∗)

β∗
x

u
(
σ∗(x′), θ

)
=

∑
θ∈Θ

πθ
s (x | θ; p∗, β∗)

β∗
x

u(a, θ)−
∑

θ∈Θ,a′∈A
πθr

(
a′ | θ; p∗, β∗, σ∗) s (x | θ; p∗, β∗)

β∗
x

u
(
a′, θ

) ≥ 0,

where we have summed over all x′ such that σ∗(x′) = a′ in the second line. Multiplication by β∗
x

and summation over all x such that σ∗(x) = a and βx > 0 give

∑
θ∈Θ

πθr (a | θ; p∗, β∗, σ∗)u(a, θ)−
∑

θ∈Θ,a′∈A
πθr

(
a′ | θ; p∗, β∗, σ∗) r (a | θ; p∗, β∗, σ∗)u(a′, θ) ≥ 0.

Division of this by
∑

θ πθr (a | θ; p∗, β∗, σ∗) leads to (4). Lemma 1 implies (5).

A.2 Proofs for Section 4

Proof of Lemma 3. Assume that there exists a solution with βx positive for n > 2 signals x ∈ X.

We show that then there exists a solution with n− 1 positive signals. The proposition follows from

the induction on n.

Let us prove the induction step. Fix the primitive experiment p employed by the agent, let β be

an optimal termination strategy for the given p, and let X ′ be the set of signals with positive βx,

and write shortly s(x | θ) for the effective experiment s(x | θ; p, β) induced by p and β. Let us abuse

notation by letting s(x) =
∑

θ πθs(x | θ) stand for the unconditional effective probability of x. For

x ∈ X ′ let qx ∈ Δ(Θ) be the posterior belief upon terminating with x: qx(θ) = πθs(x | θ)/s(x).
Since |X ′| > 2 and the state space Θ is binary, there exists a signal x∗ ∈ X ′ such that qx∗ is in

the convex hull of the posteriors qx, x ∈ X ′ \ {x∗}. Let μx be the coefficients that decompose qx∗

into qx, x ∈ X ′ \ {x∗}. That is, μ ∈ Δ(X ′ \ {x∗}) such that qx∗(θ) =
∑

x∈X′\{x∗} μxqx(θ) for all

θ ∈ Θ.

We will construct an alternative feasible effective experiment s̃(x | θ) with unconditional prob-

abilities of x denoted by s̃(x) and the posteriors πθs̃(x | θ)/s̃(x) denoted by q̃x(θ) such that:

s̃(x) =

⎧⎨
⎩s(x) + s(x∗)μx if x ∈ X ′ \ {x∗},
0 otherwise,

(14)

and

q̃x(θ) = qx(θ) for all x ∈ X ′ \ {x∗}, θ ∈ Θ. (15)

Since the experiment s̃ is more informative than s (in the sense of the Blackwell comparison), there

exists a solution with this alternative feasible effective experiment s̃, as needed for the induction

step.

It remains to construct s̃. Note that if an effective experiment s(x | θ; p, β) = βxp(x|θ)∑
x′ βx′p(x′|θ) is
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induced by some p and β, then for any vector of probabilities β̃x, the experiment

s̃(x | θ) = β̃xs(x | θ; p, β)∑
x′∈X β̃x′s(x′ | θ; p, β) =

β̃xβxp(x | θ)∑
x′∈X β̃x′βx′p(x′ | θ)

is also feasible, since it is induced by p and β′ = (β̃xβx)x∈X .

We claim that if

β̃x =

⎧⎨
⎩c

(
1 + s(x∗)μx

s(x)

)
if x ∈ X ′ \ {x∗},

0 otherwise,

where c is a constant such that β̃x ∈ (0, 1) for all x ∈ X, then the resulting s̃ satisfies the properties

(14) and (15). Let us check:

s̃(x | θ) =
β̃xs(x | θ)∑

x′∈X′\{x∗} β̃x′s(x′ | θ)

=
β̃xs(x | θ)

c
(∑

x′∈X′\{x∗} s(x′ | θ) +
∑

x′∈X′\{x∗}
s(x∗)μx′
s(x′) s(x′ | θ)

)
=

β̃xs(x | θ)
c
(∑

x′∈X′\{x∗} s(x′ | θ) +
∑

x′∈X′\{x∗}
s(x∗)μx′

πθ
qx′(θ)

)
=

β̃xs(x | θ)
c
(∑

x′∈X′\{x∗} s(x′ | θ) + s(x∗)
πθ

qx∗(θ)
)

=
β̃xs(x | θ)

c
(∑

x′∈X′\{x∗} s(x′ | θ) + s(x∗ | θ)
)

=
β̃xs(x | θ)

c

=

(
1 +

s(x∗)μx

s(x)

)
s(x | θ).

The property (14) holds since for all x ∈ X ′ \ {x∗}:

s̃(x) =

(
1 +

s(x∗)μx

s(x)

)
s(x) = s(x) + s(x∗)μx.

To establish the property (15), check that for all x ∈ X ′ \ {x∗} and all θ ∈ Θ:

q̃x(θ) =
πθs̃(x | θ)∑
θ′∈Θ s̃(x | θ′) =

πθ

(
1 + s(x∗)μx

s(x)

)
s(x | θ)∑

θ′∈Θ
(
1 + s(x∗)μx

s(x)

)
s(x | θ′)

=
πθs(x | θ)∑
θ′∈Θ s(x | θ′) = qx(θ).
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Proof of Lemma 4. For any positive β,

r(1 | 1; p, β, σI)r(0 | 0; p, β, σI)
r(0 | 1; p, β, σI)r(1 | 0; p, β, σI) =

β1p(1|1)∑
x βxp(x|1)

β0p(0|0)∑
x βxp(x|0)

β0p(0|1)∑
x βxp(x|1)

β1p(1|0)∑
x βxp(x|0)

=
p(1 | 1)p(0 | 0)
p(0 | 1)p(1 | 0) = dp.

Thus, every r ∈ Rp,σI either always selects a same action, or satisfies r(1|1)r(0|0)
r(0|1)r(0|1) = dp. Vice versa,

if a rule r′ satisfies r′(1|1)r′(0|0)
r′(0|1)r′(0|1) = dp, then it belongs to Rp,σI . To see this, let ra denote the rule

that always selects action a. Consider positive β0, and note that r (p, (β0, β1), σI) is continuous

in β1, and converges to r1 and r0 as β1 approaches 1 and 0. Thus, there exists β such that

r′(1 | 1) = r (1 | 1; p, β, σI). Moreover, there is a unique rule r̃ that satisfies r̃(1 | 1) = r′(1 | 1) and
r̃(1|1)r̃(0|0)
r̃(0|1)r̃(0|1) = dp. Thus, r

′ must be r (p, β, σI) and hence constructible from p.13

Proof of Lemma 5. The statement is trivial when r(p, β, σ) chooses an action a′ with probability

1, since then we can set β′
a′ = 1 and β′

x = 0 for x �= a′. Accordingly, assume that both actions

are chosen with positive probabilities under the rule r(p, β, σ) and σ(x) = 1 − x. For the sake of

contradiction, assume that r(p, β, σ) achieves a higher payoff than all rules constructible with p and

σI . Then, the payoff difference between the rule r(p, β, σ) and the choice rule that always selects

a = 1 must be positive:

π0u0r(0 | 0; p, β, σ) + π1u1r(1 | 1; p, β, σ)− π1u1 =

π0u0r (1 | 0; p, β, σI) + π1u1r (0 | 1; p, β, σI)− π1u1 =

π0u0r (1 | 0; p, β, σI)− π1u1r (1 | 1; p, β, σI) > 0,

where we have used r(a | θ; p, β, σI) = r(1− a | θ; p, β, σ) for the first equality. Similarly, the payoff

difference between the rule r(p, β, σ) and the rule that always selects a = 0 must be positive:

π0u0r(0 | 0; p, β, σ) + π1u1r(1 | 1; p, β, σ)− π0u0 =

π0u0r (1 | 0; p, β, σI) + π1u1r (0 | 1; p, β, σI)− π0u0 =

π1u1r(0 | 1; p, β, σI)− π0u0r(0 | 0; p, β, σI) > 0.

The last two inequalities imply

r(1 | 1; p, β, σI)
r(1 | 0; p, β, σI) <

π0u0
π1u1

<
r(0 | 1; p, β, σI)
r(0 | 0; p, β, σI) ,

which establishes contradiction because by Lemma 4, the rule r(a | θ; p, β, σI) satisfies

r(1 | 1; p, β, σI)r(0 | 0; p, β, σI)
r(1 | 0; p, β, σI)r(0 | 1; p, β, σI) =

p(1 | 1)p(0 | 0)
p(1 | 0)p(0 | 1) ,

13Rules ra that always select an action a can be trivially constructed from p and σI by using βa = 1 and βx = 0
for x �= a.
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and therefore it inherits the monotone likelihood ratio property from p.

Proof of Lemma 6. Consider the choice rule r(p, β, σI) constructed from the experiment p with

perceptual distance dp = d, and fix the probability r(0 | 0; p, β, σI) = α of the correct choice in

state 0 to a value α ∈ (0, 1). Then, by Lemma 4, the probability r(1 | 1; p, β, σI) of the correct

choice in state 1 satisfies
r(1 | 1; p, β, σI)α

(1− r(1 | 1; p, β, σI))(1− α)
= d.

For each α, the solution for r(1 | 1; p, β, σI) of this equation increases in d.

Proof of Proposition 2. The agent’s objective is linear with respect to the choice rule r(p, β, σ).

Thus, the optimal rule is the point of tangency of the set Rp,σI of the feasible rules and of an

indifference line; see Figure 2. The slope dr(0|0;p,β,σI)
dr(1|1;p,β,σI)

is decreasing in r (1 | 1; p, β, σI) and attains

value −1/d for r (1 | 1; p, β, σI) = 0, and value −d for r (1 | 1; p, β, σI) = 1. Thus, when R < 1/d

or R > d, then the problem has the corner solution as specified in statements 1 and 2 of the

proposition.

When R ∈ (
1/d, d

)
, then the optimal choice rule r∗ = r (p, β∗, σI) satisfies the feasibility

condition r∗(1|1)r∗(0|0)
r∗(0|1)r∗(0|1) = d, the second-thought-free condition (5) (applied to action a = 1):

π1u1r
∗(1 | 1) = π0u0r

∗(0 | 0)r∗(1 | 0) + π1u1r
∗(1 | 1)r∗(1 | 1),

and two normalization conditions
∑

a r
∗(a | θ) = 1, for θ ∈ {0, 1}. These four conditions jointly

imply the explicit solution for the optimal choice rule in (9). The expression (10) for β∗
1/β

∗
0 follows

from (9) and the condition r∗(1|θ)
r∗(0|θ) =

β∗
1p(1|θ)

β∗
0p(0|θ) .

Proof of Corollary 1. The comparative statics results 1 and 2 follow from the signs of the derivatives

of the explicit solutions (9) and (10). For the relative response rate in statement 3, the monotone

likelihood property of p implies that

f1
f0

=
β∗
0p(0 | 1) + β∗

1p(1 | 1)
β∗
0p(0 | 0) + β∗

1p(1 | 0)

increases in β∗
1/β

∗
0 , since

df1
f0

d
β∗
1

β∗
0

=
p(1 | 1)p(0 | 0)− p(0 | 1)p(1 | 0)(

p(0 | 0) + β∗
1

β∗
0
p(1 | 0)

)2 > 0.

For statement 4, note that the choice rule r∗ characterized in (9) is homogeneous with degree

zero with respect to u0 and u1. Thus, without loss of generality, we can set u0 = 1. Bayes rule
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implies

Prr∗(θ = 1 | a = 1) = r∗(1 | 1) π1
π1r∗(1 | 1) + (1− π1) (1− r∗(0 | 0)) ,

Prr∗(θ = 1 | a = 0) = (1− r∗(1 | 1)) π1
π1 (1− r∗(1 | 1)) + (1− π1)r∗(0 | 0) .

We substitute the expressions for r∗(0 | 0) and r∗(1 | 1) from (9) and take derivatives with respect

to π1 to get

d

dπ1
Prr∗(θ = 1 | a = 1) =

d
√

dπ1u1
1−π1

2

(
dπ1 + (1− π1)

√
dπ1u1
1−π1

)2 ,

d

dπ1
Prr∗(θ = 1 | a = 0) =

√
dπ1u1
1−π1

2

(
π1 + (1− π1)

√
dπ1u1
1−π1

)2 ,

where both derivatives are positive, as needed.

A.3 Proofs for Section 5

Proof of Corollary 2. Since β∗
1/β

∗
0 increases in R, it suffices to show that β∗

1/β
∗
0 = 1 when R = 1

and the primitive experiment p is symmetric. Indeed, when R = 1, then by (10),

β∗
1

β∗
0

=
√

dp
p(0 | 1)
p(1 | 1) =

√
p(0 | 0)p(0 | 1)
p(1 | 1)p(1 | 0) = 1,

where the last equality follows from the symmetry of p.

Proof of Corollary 3. β∗
1 > β∗

0 by Corollary (2) since π1u1 > π0u0. Recall that fθ = β∗
1p(1 |

θ)+β∗
0p(0 | θ) denotes the probability of termination per each round in state θ, and that the response

time t in the state θ is geometrically distributed with the decision rate fθ: Prϕ(t | θ) = fθ(1− fθ)
t

for t = 0, 1, . . . . Since p(1 | 1) = p(0 | 0) > p(1 | 0) = p(1 | 0) and β∗
1 > β∗

0 , the decision rate is

higher in state 1 than in state 0: f1 > f0. Thus, the likelihood ratio Prϕ(t | θ = 1)/Prϕ(t | θ = 0)

decreases with t, and hence Prϕ(θ = 1 | t) decreases in t. The fact that β∗
1 > β∗

0 , and the symmetry

of p implies that the probability of the correct choice is larger in state 1 than in state 0:

r (1 | 1; p, β∗, σI) =
β∗
1p(1 | 1)

β∗
0p(0 | 1) + β∗

1p(1 | 1) >
β∗
0p(0 | 0)

β∗
0p(0 | 0) + β∗

1p(1 | 0) = r (0 | 0; p, β∗, σI) .

Since Prϕ(a = θ | t) = Prϕ(θ = 1 | t)r(1 | 1; p, β∗, σI) + Prϕ(θ = 0 | t)r(0 | 0; p, β∗, σI), the result

obtains.

Proof of Corollary 4. The belief formation problem studied is a special case of our binary setting
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with the primitive experiment p(x | θ) = ρθ if x = 1, p(x | θ) = 1 − ρθ if x = 0 and with equally

a priori attractive actions, R = 1. Since ρ0 < ρ1, the setting satisfies the monotone likelihood

property, and thus by Lemma 5, there exists a solution with σ(x) = x. Since R = 1 ∈ (1/d, d),

Proposition 2 implies that the agent’s behavior is stochastic, both β∗
0 and β∗

1 are positive, and the

ratio of the search intensities β∗
1/β

∗
0 satisfies (10). Since R = 1, (10) simplifies to

β∗
1

β∗
0

= d1/2p

p(0 | 1)
p(1 | 1) =

(
p(0 | 1)p(0 | 0)
p(1 | 1)p(1 | 0)

)1/2

=

(
(1− ρ1)(1− ρ0)

ρ1ρ0

)1/2

.

The inequality β∗
1 > β∗

0 follows from ρ0 < ρ1 < 1− ρ0.

The next result is an auxiliary lemma used in the proof of Proposition 3.

Lemma 9. Suppose that termination probabilities βx are positive for all x ∈ Θ. Then, the optimal

effective choice rule r∗ satisfies for any pair of states θ, θ′ ∈ Θ:

r∗(θ | θ)r∗(θ′ | θ) = r∗(θ | θ′)r∗(θ′ | θ′). (16)

Condition (16) is a strengthening of the second-thought-free condition (5). It requires that the

agent who has terminated the decision process with perception θ, and knows that the second run of

the process r∗ terminates with a value θ′ is indifferent between θ and θ′. This condition is stronger

than the second-thought-free condition (5), since (5) requires (16) to hold only on average across all

θ′. This strengthening holds for the special case of this application with a symmetric experiment

p.

Proof of Lemma 9. The optimal effective choice rule satisfies the second-thought-free condition (5),

equivalent to:

r∗(θ | θ) =
∑
θ′∈Θ

r∗(θ | θ′)r∗(θ′ | θ′) for all θ ∈ Θ,

which after two algebraic steps gives:

r∗(θ | θ)(1− r∗(θ | θ)) = ∑
θ′ �=θ

r∗(θ | θ′)r∗(θ′ | θ′) for all θ ∈ Θ,

∑
θ′ �=θ

r∗(θ | θ)r∗(θ′ | θ) =
∑
θ′ �=θ

r∗(θ′ | θ′)r∗(θ | θ′) for all θ ∈ Θ.

The last system of equations is formally equivalent to the system of balance conditions for a Markov

chain. To see this, consider an ergodic Markov chain with transition probabilities from θ to θ′ equal
to r∗(θ′ | θ). The balance condition for the stationary distribution μ(θ) of this chain is

∑
θ′ �=θ

μ(θ)r∗(θ′ | θ) =
∑
θ′ �=θ

μ(θ′)r∗(θ | θ′) for all θ ∈ Θ,
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and thus r∗(θ | θ) is proportional to the ergodic probability μ(θ) of the state θ for the chain with

transition probabilities r∗(θ′ | θ).
Recall that if a Markov chain with transition probabilities m(θ′ | θ) is reversible, then its

stationary distribution μ(θ) satisfies detailed balance conditions

μ(θ)m(θ′ | θ) = μ(θ′)m(θ | θ′) for all θ �= θ′.

Thus, it suffices to prove that the probabilities r∗(θ′ | θ) constitute a reversible Markov chain.

Recall that a Markov chain m(θ′ | θ) is reversible if and only if it satisfies the Kolmogorov

criterion, which requires for all sequences of states θ1, θ2, . . . , θn,

m(θ2 | θ1)m(θ3 | θ2) . . .m(θn | θn−1)m(θ1 | θn)
m(θn | θ1)m(θn−1 | θn) . . .m(θ2 | θ3)m(θ1 | θ2) = 1. (17)

The Markov chain with transition probabilities p(θ′ | θ) given by the primitive experiment p sat-

isfies the Kolmogorov criterion (17) since p is symmetric by assumption. Finally, for any positive

termination strategy β, the effective choice rule r(θ′ | θ; p, β, σI) satisfies the Kolmogorov criterion

too. This is because r(θ′ | θ; p, β, σI) = βθ′p(θ′|θ)∑
θ̃ βθ̃p(θ̃|θ)

, and when the expressions for r(θ′ | θ; p, β, σI)
are substituted into (17), then the terms βθ′ and the denominators cancel out, and hence

r(θ2 | θ1; p, βσI)r(θ3 | θ2; p, β, σI) . . . r(θ1 | θn; p, β, σI)
r(θn | θ1; p, β, σI)r(θn−1 | θn; p, β, σI) . . . r(θ1 | θ2; p, β, σI) =

p(θ2 | θ1)p(θ3 | θ2) . . . p(θ1 | θn)
p(θn | θ1)p(θn−1 | θn) . . . p(θ1 | θ2) = 1,

as needed.

Proof of Proposition 3. Lemma 9 implies for all pairs θ, θ′ ∈ Θ:

r∗(θ | θ)r∗(θ′ | θ) = r∗(θ | θ′)r∗(θ′ | θ′).

By Lemma 2, we can substitute r∗(θ′ | θ) = β∗
θ′p(θ

′|θ)
∑

θ̃ β
∗
θ̃
p(θ̃|θ) , which gives

β∗
θβ

∗
θ′p(θ | θ)p(θ′ | θ)(∑
θ̃ β

∗
θ̃
p(θ̃ | θ)

)2 =
β∗
θβ

∗
θ′p(θ | θ′)p(θ′ | θ′)(∑

θ̃ β
∗
θ̃
p(θ̃ | θ′)

)2 .

Using symmetry of p we get ∑
θ̃ β

∗
θ̃
p(θ̃ | θ′)∑

θ̃ β
∗
θ̃
p(θ̃ | θ) =

p1/2(θ′ | θ′)
p1/2(θ | θ) , (18)

Equation (18), used below to prove the proposition, has an interesting interpretation on its own.

It states that the decision rate fθ =
∑

θ̃ β
∗
θ̃
p(θ̃ | θ) in each state θ is proportional to p1/2(θ | θ) and

thus high in those states that are reliably identified by the primitive experiment p.
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To compare r∗(θ1 | θ2) and r∗(θ2 | θ1), we write

r∗(θ1 | θ2)
r∗(θ2 | θ1) =

β∗
θ1

p(θ1|θ2)
∑

θ̃ β
∗
θ̃
p(θ̃|θ2)

β∗
θ2

p(θ2|θ1)
∑

θ̃ β
∗
θ̃
p(θ̃|θ1)

=

β∗
θ1

p(θ1|θ2)
p1/2(θ2|θ2)
β∗
θ2

p(θ2|θ1)
p1/2(θ1|θ1)

=
β∗
θ1
p1/2(θ1 | θ1)

β∗
θ2
p1/2(θ2 | θ2)

,

where we have used (18) in the second step, and symmetry of p in the last step. Define β̂θ =

β∗
θp

1/2(θ | θ). We need to prove that if θ1 is more distinct than θ2, then β̂θ1 > β̂θ2 .

By (18),
(
β̂θ
)
θ
satisfy the system of linear equations:

∑
θ′

Dθ′θβ̂θ′ = 1 for all θ,

where Dθ′θ =
p(θ′|θ)

p1/2(θ′|θ′)p1/2(θ|θ) . We claim that if θ1 is more distinct than θ2, then Dθ3θ1 < Dθ3θ2 for

all θ3 �= θ1, θ2. This follows from p(θ3 | θ1) < p(θ3 | θ2) and from the symmetry of p:

p(θ1 | θ1) = 1− p(θ2 | θ1)−
∑

θ3 �=θ1,θ2

p(θ3 | θ1) > 1− p(θ1 | θ2)−
∑

θ3 �=θ1,θ2

p(θ3 | θ2) = p(θ2 | θ2),

and therefore,

Dθ3θ1 =
p(θ1 | θ3)

p1/2(θ1 | θ1)p1/2(θ3 | θ3)
<

p(θ2 | θ3)
p1/2(θ2 | θ2)p1/2(θ3 | θ3)

= Dθ3θ2 .

Thus,

Dθ1θ1 β̂θ1 +Dθ2θ1 β̂θ2 = 1−
∑

θ3 �=θ1,θ2

Dθ3θ1 β̂θ3 > 1−
∑

θ3 �=θ1,θ2

Dθ3θ2 β̂θ3 = Dθ2θ2 β̂θ2 +Dθ1θ2 β̂θ1 .

Using that Dθθ = 1 and Dθθ′ = Dθ′θ, we have

β̂θ1 +Dθ2θ1 β̂θ2 > β̂θ2 +Dθ2θ1 β̂θ1 .

The assumption of sufficient precision of p and symmetry of p imply that Dθ2θ1 < 1, and thus

β̂θ1 > β̂θ2 , as needed.

A.4 Proofs for Section 6

Proof of Lemma 7. All rules feasible in Piia are feasible in R(Piia): R(Piia) ⊃ Piia. This is imme-

diate since when βa = 1 for all a ∈ A, then r(p, β, σI) = p for all p ∈ Piia.

It remains to show R(Piia) ⊂ Piia. Consider p(γ, σ) ∈ Piia constructed in the setting of

example 2 by the use of the generalized termination strategy γ(m,x), and the action strategy

σ(m,x). Recall that r(p(γ, σ), β, σ̂) is the choice rule constructed by repetitions of the rule p(γ, σ)

according to the termination strategy β = (βa)a∈A and by applying the action strategy σ̂ : A −→ A
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upon the termination. We need to show that there exists γ′ and σ′ such that r(p(γ, σ), β, σ̂) =

p(γ′, σ′). This is indeed so when the termination probability γ′(t | m,x) = γ(t | m,x)βσ(m,x), the

transition probability to the original memory state m0 is γ′(m0 | m,x) = γ(m0 | m,x) + γ(t |
m,x)

(
1− βσ(m,x)

)
, which is the sum of the probabilities that the original process γ transits to m0

and that the decision process r(p(γ, σ), β, σ̂) restarts after termination of p(γ, σ). Additionally, for

all m̃ �= m0, γ
′(m̃ | m,x) = γ(m̃ | m,x). The above choice of γ′ implies that the process p(γ′, σ′)

replicates the Markov process over the memory states under r(p(γ, σ), β, σ̂). Finally, to replicate

the choices upon terminations, we set the action strategy σ′(m,x) = σ̂(σ(m,x)) for all (m,x).

Proof of Lemma 8. Again, trivially, R(Ppf ) ⊃ Ppf , since r(p, (1, . . . , 1), σI) = p for all p ∈ Ppf .

Additionally, R(Ppf ) ⊂ Ppf . This is indeed so because for any β = (βa)a∈A and any σ̂ : A −→ A,

r(p(γ, σ), β, σ̂) = p(γ′, σ′) where the termination probability γ′(t | h, θ) = γ(t | h, θ)βσ(h), the

transition probability to the empty signal history ∅ is set to γ′(∅ | h, θ) = γ(∅ | h, θ) + γ(t |
h, θ)

(
1− βσ(h)

)
, and for all h̃ �= ∅, γ′(h̃ | h, θ) = γ(h̃ | h, θ). Finally, the action strategy is set to

σ′(h) = σ̂(σ(h)) for all histories h.

Proof of Proposition 4. We extend the definition of the effective experiment to the setting with

discounting. Let

sδ(x | θ; p, β) =
∑
t

∑
xt:xt=x

δtρ
(
xt | θ; p, β) ,

where ρ
(
xt | θ; p, β) is the probability of the signal history xt defined in (1). Thus, sδ(x | θ; p, β) is

the discounted probability that the agent’s last observed signal is x. It satisfies the recursion:

sδ(x | θ; p, β) = βxp(x | θ) + δ
∑
x′∈X

(
1− βx′p

(
x′ | θ)) sδ(x | θ; p, β), (19)

where the first summand is the probability that the decision process terminates with x in the first

round and the second summand is the discounted probability that the process terminates with x

later. Solving (19) for sδ gives

sδ(x | θ; p, β) = βxp(x | θ)
1− δ + δ

∑
x′∈X βx′p(x′ | θ) . (20)

The discounted repeated-cognition problem (12) is thus equivalent to

max
p∈P,β∈B,σ∈S

∑
θ∈Θ,x∈X

πθ
βxp(x | θ)

1− δ + δ
∑

x′∈X βx′p(x′ | θ)u(σ(x), θ). (21)

Consider x with an interior termination probability β∗
x ∈ (0, 1) and let a = σ∗(x). The first-order
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condition of the problem (21) with respect to βx is:

∑
θ∈Θ

πθ
sδ(x | θ; p∗, β∗)

β∗
x

u(a, θ)− δ
∑

θ∈Θ,x′∈X
πθsδ(x

′ | θ; p∗, β∗)
sδ(x | θ; p∗, β∗)

β∗
x

u(σ∗(x′), θ) =

∑
θ∈Θ

πθ
sδ(x | θ; p∗, β∗)

β∗
x

u(a, θ)− δ
∑

θ∈Θ,a′∈A
πθr

∗
δ (a

′ | θ; p∗, β∗, σ∗)
sδ(x | θ; p∗, β∗)

β∗
x

u(a′, θ) = 0,

where we have summed over all x′ such that σ∗(x′) = a′ in the second line. Multiplication by β∗
x

and summation over all x such that σ∗(x) = a gives (13).

Proof of Proposition 5. Any (β, σ) that leads to a selection of only one action with certainty is

dominated by the decision process that terminates after the first round and chooses an action equal

to the observed signal. Thus, both β∗
0 and β∗

1 are positive, and the action strategy is σ∗(x) = x

or σ∗(x) = 1 − x. Let us show that the action strategy σ∗ must be the identity function σI . The

argument is identical to that in the proof of Lemma 5 for the setting without discounting, which

we repeat here for convenience.

Assume for contradiction that σ∗(x) = 1−x. The payoff difference between the rule rδ(p, β
∗, σ∗)

and the choice rule that always selects a = 1 must be positive, since the latter is dominated:

π0u0rδ(0 | 0; p, β∗, σ∗) + π1u1rδ(1 | 1; p, β∗, σ∗)− π1u1 =

π0u0rδ(1 | 0; p, β∗, σI) + π1u1rδ(0 | 1; p, β∗, σI)− π1u1 ≥
π0u0rδ(1 | 0; p, β∗, σI)− π1u1rδ(1 | 1; p, β∗, σI) > 0,

where the first inequality follows from the fact that any discounted choice rule satisfies
∑

a rδ(a |
θ; p, β, σ) ≤ 1. Similarly, the payoff difference between the rule rδ(p, β

∗, σ∗) and the rule that always

selects a = 0 must be positive:

π0u0rδ(0 | 0; p, β∗, σ∗) + π1u1rδ(1 | 1; p, β∗, σ∗)− π0u0 =

π0u0rδ(1 | 0; p, β∗, σI) + π1u1rδ(0 | 1; p, β∗, σI)− π0u0 ≥
π1u1rδ(0 | 1; p, β∗, σI)− π0u0rδ(0 | 0; p, β∗, σI) > 0.

The last two inequalities imply:

rδ(0 | 1; p, β∗, σI)
rδ(0 | 0; p, β∗, σI)

>
π0u0
π1u1

>
rδ(1 | 1; p, β∗, σI)
rδ(1 | 0; p, β∗, σI)

.

This establishes contradiction because as shown in the proof of Proposition 4, rδ(x | θ; p, β∗, σI) =
sδ(x | θ; p, β∗) = β∗

xp(x|θ)
1−δ+δ

∑
x′ β

∗
x′p(x

′|θ) , and thus

rδ(1 | 1; p, β∗, σI)rδ(0 | 0; p, β∗, σI)
rδ(0 | 1; p, β∗, σI)rδ(1 | 0; p, β∗, σI)

=
p(1 | 1)p(0 | 0)
p(0 | 1)p(1 | 0) > 1.
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Further, it must hold that β∗
0 = 1 or β∗

1 = 1. Otherwise, if both β∗
0 < 1 and β∗

1 < 1, then the

agent can increase both β∗
x by a same factor. This preserves the conditional action distribution in

each state θ and increases the decision rates in both states, and thus it is a profitable deviation.

Additionally, it must be that β∗
1 = 1: Using the expressions for sδ(θ | θ; p, β) = rδ(θ | θ; p, β, σI),

the payoff for σI and (β0, β1) = (β, 1) is

π0u0
βα

1− δ + δ(βα+ 1− α)
+ π1u1

α

1− δ + δ(α+ β(1− α))
, (22)

and payoff for σI and (β0, β1) = (1, β) is

π0u0
α

1− δ + δ(α+ β(1− α))
+ π1u1

βα

1− δ + δ(βα+ 1− α)
, (23)

The assumptions that π1u1 > π0u0 and that α > 1/2 imply that, for any β ∈ (0, 1), (22) exceeds

(23), as needed.

It therefore remains to find β∗
0 ∈ (0, 1]. If the optimal value is interior, then it satisfies (13)

with a = 0:

π0u0rδ(0 | 0, p, β∗, σI) = δ
(
π0u0r

2
δ (0 | 0; p, β∗, σI) + π1u1rδ(1 | 1; p, β∗, σI)rδ(0 | 1; p, β∗, σI)

)
.

After the substitution of rδ(x | θ; p, β, σI) = βxp(x|θ)
1−δ+δ

∑
x′ βx′p(x′|θ) , this condition simplifies into a

quadratic equation for β∗
0 . When δ < 1

α+(1−α)R , then this condition does not have an interior

solution and the derivative of the value (22) with respect to β0 at β0 = 1 is positive. Thus, in this

case, the unique β∗
0 satisfying the first-order condition is β∗

0 = 1.

When δ > 1
α+(1−α)R , then the condition has an interior solution and the derivative of the value

(22) with respect to β0 at β0 = 1 is negative. Thus, for this range of parameters, the unique β∗
0

satisfying the first-order condition is the interior value that solves the quadratic equation, solution

of which decreases in δ.
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Abstrakt 

Agent, který čelí rozhodovacímu problému, získává informace relevantní pro zisk do okamžiku 

zaplnění úložní kapacity, kdy se musí rozhodnout, zda ukončit proces rozhodování a zvolit akci 

nebo odstranit některé informace. Agent kontroluje korelaci mezi užitkem a konečnou akcí tím, 

že podmiňuje pravděpodobnost  ukončení získanými informacemi. Předkládáme  podmínku 

optimality  pro  výslednou  stochastickou volbu. Podmínka poukazuje na výhody selektivní 

paměti aplikované na získané signály. Omezeně optimální rozhodovací pravidlo vykazuje (i) 
konfirmační zkreslení, (ii) komplementaritu rychlosti a přesnosti, (iii) nadhodnocování 

výjimečných událostí a (iv) efekt významnost (salience). 
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