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Abstract

I model knowledge (patent) licensing and evaluate intellectual property regulation in an

endogenous growth framework where the engine of growth is in-house R&D performed

by high-tech firms. I show that high-tech firms innovate more and economic growth

is higher when there is knowledge licensing, and when intellectual property regulation

facilitates excludability of knowledge, than when knowledge is not excludable and there

are knowledge spillovers among high-tech firms. However, the number of high-tech firms

is lower, and welfare is not necessarily higher, when there is knowledge licensing than

when there are knowledge spillovers.
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1 Introduction

A number of growth models treat private firms’ intentional investments in R&D as the

driver of long-run growth and welfare (e.g., Romer, 1990, Aghion and Howitt, 1992).

These models assume that there are knowledge spillovers in the R&D process and that

R&D builds on a pool of knowledge. In this sense, these growth models abstract from the

role of knowledge (patent) licensing and from the details about the exchange of knowledge

in the economy. Nevertheless, licensing and citing patents is common in high-tech indus-

tries and seems to play a significant role for innovation (e.g., Anand and Khanna, 2000,

Shapiro, 2001, Arora and Gambardella, 2010). Current high-profile examples include li-

censing agreements and patent citations among product market rivals such as Google,

Microsoft, and Apple Inc.

In this paper, I present an endogenous growth model where high-tech firms engage

in in-house R&D which then drives long-run growth. High-tech firms have exclusive

rights to their product type. In a high-tech firm, the innovation enhances firm/product-

specific knowledge, which reduces the firm’s marginal costs or increases the quality of its

product. High-tech firms finance their R&D expenditures from operating profits. They

set prices and compete strategically in their output market. My point of departure is that

I model knowledge (patent) licensing among high-tech firms. The knowledge generated in

a high-tech firm cannot be used for free, since intellectual property regulation facilitates

its excludability (i.e., it favors patents). However, it can be licensed. Given that each

high-tech firm produces a distinct type of good, for such a firm the knowledge of other

high-tech firms is complementary to its own. If a high-tech firm licenses the knowledge

of another, it can combine that knowledge with its own and improve its in-house R&D

process, since the latter builds on the knowledge that the firm possesses.

I evaluate intellectual property regulation and contrast the inference from this setup

to the inference from a setup where intellectual property regulation does not facilitate

excludability and there are knowledge spillovers among high-tech firms. I also show how

market concentration and the intensity of competition, as measured by the elasticity of

substitution between high-tech goods, can matter for innovation in the high-tech industry

and aggregate performance in both setups.

I show that innovation in the high-tech industry, economic growth, and welfare, are

higher when there is knowledge licensing than when there are knowledge spillovers. Inno-

vation and growth are higher when there is knowledge licensing because firms appropriate

the benefits from their R&D more in this case. In turn, welfare is higher because these

dynamic gains prevail over the static losses in terms of within-period output.

In both setups that I consider, innovation in the high-tech industry and economic

growth increase with the number of high-tech firms and the intensity of competition. The

drivers behind these results are the relative price distortions, which are due to price setting
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by high-tech firms. These distortions adversely affect the demand for high-tech goods.

Given that high-tech firms interact strategically in the output market, a higher number of

firms and more intensive competition imply lower mark-ups and lower distortions. This

increases the demand for high-tech goods and implies higher output and investments in

R&D in the high-tech industry.1

Finally, I endogenize the number of high-tech firms assuming cost-free entry. Again,

innovation in the high-tech industry and economic growth are higher when there is knowl-

edge licensing than when there are knowledge spillovers. This happens, however, at the

expense of the number of high-tech firms (or the variety of high-tech goods). The number

of high-tech firms is lower when there is knowledge licensing than when there are knowl-

edge spillovers. Because of this, welfare is not necessarily higher when there is knowledge

licensing.

I also show that increasing the intensity of competition reduces the number of firms

in both setups. This has no effect, however, on innovation in the high-tech industry and

economic growth.

This paper is related to the endogenous growth literature (e.g., Romer, 1990, Aghion

and Howitt, 1992, Smulders and van de Klundert, 1995), where the positive growth of the

economy on a balanced growth path is a result of technological and preference factors. In

particular, it is related to studies which, in an endogenous growth framework, suggest how

the aggregate performance can be affected by imperfect competition in an industry where

the firms engage in in-house R&D (e.g., Peretto, 1996, van de Klundert and Smulders,

1997). It contributes to these streams of studies while showing how knowledge licensing

in such an industry can affect innovation, economic growth, and welfare.

Several studies evaluate intellectual property regulation from the perspective of the

duration of patents in the standard variety-expansion frameworks (e.g., Judd, 1985, Fu-

tagami and Iwaisako, 2007). There are also a number of studies that model knowledge

and technology licensing in the standard Schumpeterian growth framework and show

how intellectual property regulation and international technology licensing can affect in-

novation and growth (e.g., O’Donoghue and Zweimüller, 2004, Yang and Maskus, 2001,

Tanaka, Iwaisako, and Futagami, 2007). In these studies, licensing happens between

incumbents and entrants given that in the standard Schumpeterian growth framework

incumbents have no incentives to innovate. Licensing does not explicitly aid the R&D

process and licenses are essentially permits for production. In order to maintain incen-

tives for licensing, these studies assume that either licensors and licensees (incumbents

and entrants) collude in the product market, or licensees can access a larger market (e.g.,

one of the countries bans FDI). The share in collective profits and licensing fees compen-

1O’Donoghue and Zweimüller (2004) have a similar result in a Schumpeterian growth model. Vives (2008)
shows that such a result can also hold in partial equilibrium for various types of demand functions. The
positive relation between innovation and competitive pressure is consistent with empirical findings of,
for example, Blundell, Griffith, and van Reenen (1999).
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sate incumbents’ loss of the product market (and costs of technology transfer) and are

either exogenous or exogenously determined by intellectual property regulation. In con-

trast, this paper has a non-tournament framework where incumbents engage in in-house

R&D, which improves their productivity or the quality of their product. Incumbents

innovate because it enables the stealing market of share, and licensing happens among

incumbents. Firms have an incentive to license knowledge from other firms because that

aids their R&D process. The intellectual property regulation affects the excludability of

knowledge and its market structure. License fees are determined by the structure of the

market for knowledge and supply and demand conditions. To that end, the framework

and analysis of this paper can be thought of as complementary.

There is also a large body of firm- and industry-level studies that analyze the im-

plications of patent licensing, patent consortia or pools, and knowledge exchange among

firms on innovation and market conduct (e.g., Gallini andWinter, 1985, Katz and Shapiro,

1985, Fauĺı-Oller and Sandońıs, 2002, Arora and Fosfuri, 2003). This paper analyzes such

issues at the aggregate level in a dynamic general equilibrium framework, which assumes

an undistorted market for knowledge/patents. This assumption allows for tractable infer-

ence. In turn, the dynamic general equilibrium framework endogenizes the growth rate of

the economy and the effect of knowledge licensing on, for example, the interest rate which

affects the incentives to perform R&D. Licensing in this paper ceteris paribus motivates

R&D. This implies a higher growth rate and higher rate of interest which reduces the

incentives to perform R&D.

The next section introduces the model. Section 3 analyzes the features of dynamic

equilibrium. Section 4 concludes. The proofs of the results are offered at the end of the

paper.

2 The Model

Households

The economy is populated by a continuum of identical and infinitely lived households of

mass one. The representative household is endowed with a fixed amount of labor L. It

inelastically supplies its labor to firms which produce final goods and to high-tech firms.

The household has a standard CIES utility function with an inter-temporal substitution

parameter 1/θ and discounts the future streams of utility with rate ρ (θ, ρ > 0). The

utility gains are from the consumption of amount C of final goods. The lifetime utility

of the household is

U =

+∞
∫

0

C1−θ
t − 1

1− θ
exp (−ρt) dt.
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The household maximizes its lifetime utility subject to a budget constraint:

Ȧ = rA+ wL− C, (1)

where A is the household’s asset holdings [A (0) > 0], r and w are the market returns on

its asset holdings and labor supply.

The rule that follows from the household’s optimal problem is the standard Euler

equation:
Ċ

C
=

1

θ
(r − ρ) .

This, together with the budget constraint, describes the paths of the household’s con-

sumption and assets.

Final Goods

Final goods, Y , are homogeneous. The household’s demand for final goods is served by

a representative producer. The production of final goods requires labor and X, which is

a CES composite of high-tech goods {xi} with an elasticity of substitution ε (ε > 1).

The production of the final goods has a Cobb-Douglas technology and is given by

Y = XσL1−σ
Y , (2)

where

X =

(

N
∑

i=1

x
ε−1
ε

i

)

ε
ε−1

, (3)

LY is the share of the labor force employed in final goods production, N is the number

of high-tech goods, and 1 > σ > 0.2

For ease of exposition, the problem of the representative final goods producer is divided

into two steps. In the first step, the representative producer decides on the optimal

combination of LY and X in Y and in the second step it decides on the optimal amounts

of high-tech goods x in X.

Therefore, in the first step the representative producer solves the following problem:

max
LY ,X

{Y − wLY − PXX} ,

where PX is the private marginal value of X and Y is the numeraire. The optimal rules

that follow from this problem describe the final goods producer’s demand for labor and

2I allow N to be real number in order to avoid complications arising from integer constraints.
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the optimal amount of X in the production of Y :

wLY = (1− σ)Y, (4)

PXX = σY. (5)

In the second step, the producer solves:

max
{xi}

N
i=1

{

PXX −
N
∑

i=1

pxixi

}

,

where px is the price of x. This implies that the demand for a high-tech good j (j =

1, ..., N) is given by

xj = X

(

PX
pxj

)ε

. (6)

From this expression follow two equilibrium conditions:

PXX =
N
∑

i=1

pxixi, (7)

PX =

(

N
∑

i=1

p1−εxi

)

1
1−ε

, (8)

where (7) implies that there is no waste and (8) implies that PX is an index of px.

High-Tech Goods

Each high-tech firm owns a design of distinct high-tech good x, which it produces. The

production of a high-tech good requires labor input Lx. The production function of a

high-tech good x is given by

x = λLx, (9)

where λ measures the producer’s knowledge of the production process or the quality of

the high-tech good. This knowledge is firm/product-specific since each high-tech firm

produces a distinct good.

High-tech firms are price setters in their output market and discount their future

profit streams π with the market interest rate r. I assume that high-tech firms cannot

collude in the output market.

In-House R&D

High-tech firms can engage in R&D for accumulating knowledge and increasing λ. This

can be interpreted as a process innovation that increases productivity (the firms are able

to produce more of x), or as a quality upgrade (the firms are able to produce the same
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amount of higher quality x). Knowledge is not a rival input so that, potentially, it can

be used at the same time in multiple places/firms.

In this section, I offer two different settings for the R&D process. The differences stem

from how knowledge is exchanged among high-tech firms. In both cases, I assume that

the firms cannot collude and stop innovating (for example, because of antitrust regulation

or non-sustainability of collusion).3

Hereafter, when appropriate, for ease of exposition, I describe the properties of the

high-tech industry taking, as an example, a high-tech firm j. In order to improve its

knowledge λj the firm needs to hire researchers/labor Lrj . Researchers use the current

knowledge of the firm in order to create better knowledge.

Knowledge Licensing: This is the benchmark setup, and I call it S.1. Knowledge in

this setup can be licensed. If high-tech firm j decides to license knowledge from other

high-tech firms, its researchers combine that knowledge with the knowledge available in

the firm, in order to produce new knowledge. The knowledge available in the firm is an

essential input in the R&D of the firm. Moreover, it is the only essential input. This

implies that the high-tech firm does not need to acquire knowledge from other firms in

order to advance its own. However, it needs to have its own knowledge in order to build

on it. This is in line with the fact that high-tech firms produce distinct goods.

I assume that the in-house R&D process is given by

λ̇j = ξ

[

N
∑

i=1

(ui,jλi)
α

]

λ1−αj Lrj , (10)

where ξ is an exogenous efficiency level (ξ > 0), ui,j is the share of knowledge of firm i

that firm j licenses, uj,j ≡ 1, and 1 > α > 0.

Intellectual property regulation facilitates excludability of knowledge and grants bar-

gaining power to the licensors in the sense that they can make a ‘take it or leave it’ offer

to licensees. In turn, license contracts do not allow for sub-licensing.4

It can be shown that in (10) the elasticity of substitution between the different types of

knowledge that the high-tech firm licenses is equal to 1/(1−α). It can also be shown that

the elasticity of substitution between the high-tech firm’s knowledge and any knowledge

that it licenses is lower than 1/(1 − α). This restates the importance of the firm’s

knowledge for its R&D process.

In this R&D process, the productivity of researchers increases linearly with knowledge

licensed from an additional high-tech firm because of summation. Such a formulation can

be justified if there are significant complementarities among the knowledge of high-tech

3Appendix E.1 offers a setup where firms cooperate in R&D and compete in the product market.
4I also need to assume that patent infringements are detectable. This seem to be a plausible assumption
given the recent history of the high number of patent infringement lawsuits in high-tech industries.
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firms.5 Further, it might seem brave to assume that R&D in a single firm can have

non-decreasing returns.6 This assumption allows the focus to be on the effect of market

structure of the high-tech industry on innovation in that industry through competitive

pressure. It can be relaxed by setting uj,j ≡ 0 in square brackets in (10). In such a case,

in this model knowledge licensing (or exchange of knowledge) is a necessary condition to

ensure non-decreasing returns to R&D and positive growth in the long-run (for further

details, see Appendix E.2). The R&D process (10) can also be viewed as a simplification

leading to tractable results. It ensures that there is a balanced growth path, for example.7

One way to think about this setup is that each high-tech firm can license the patented

knowledge of other firms in order to generate its own patented knowledge, which helps to

improve its production or output. The firm does not use the knowledge that it licensed

directly in the production of its good, because that knowledge needs to be combined with

its own knowledge, and that requires investments in terms of hiring researchers and time.

The latter seems plausible for technologically sophisticated (e.g., high-tech) goods.

Knowledge Spillovers: In this setup, S.2, there are knowledge spillovers among high-

tech firms. In high-tech firm j, the researchers combine the knowledge that spills over

from other high-tech firms with the knowledge available in the firm, while generating new

knowledge. In order to maintain symmetry, I also assume that the researchers do not

fully internalize the use of the current knowledge available in the firm, and have external

benefits from it. Similar to the previous setup, this assumption allows the focus to be on

the effect of market structure of the high-tech industry on innovation through competitive

pressure.

The R&D process is given by

λ̇j = ξΛ̃λ1−αj Lrj , (11)

where I assume that in equilibrium Λ̃ is equal to

Λ̃ =
N
∑

i=1

λαi . (12)

An interpretation for this case is that intellectual property regulation does not enforce

5Rivera-Batiz and Romer (1991) and Grossman and Helpman (1995) have a similar additive structure for
knowledge in the R&D process in the context of knowledge spillovers among countries. Peretto (1998a,b)
has a similar structure in the context of knowledge spillovers within an industry.

6In this respect, an example of a high-tech firm might be IBM, which started with tabulating machines a
century ago and reached the point of producing supercomputers.

7This formulation of the R&D process leads to scale effects which are contentious (Jones, 1995, 2005,
Jones and Romer, 2010). The mechanisms behind the main results of this paper are based on factor
allocations. Therefore, as shown in Appendix E.5 and Appendix E.6, the results might not generalize in
the “second generation” growth models, but can generalize in the “third generation” models. I maintain
the current framework for its analytical simplicity.
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excludability and firms cannot maintain secrecy. Another possible interpretation is that

there is a market for knowledge, and intellectual property regulation grants the bargaining

power to the potential licensees, so that they have the right to make a ‘take it or leave

it’ offer. The licensees under this assumption receive the knowledge at no cost (i.e., there

are spillovers) if the supply of knowledge is not elastic. The supply is necessarily inelastic

if licensors do not have trade-offs associated with licensing knowledge. It seems natural

to assume that once knowledge is created, its supply entails virtually no costs. There

would then be no trade-offs if licensors do not take into account that the knowledge they

license is used for stealing business: the licensees use it in order to reduce their prices and

steal market share. In this line of literature, it is common to assume that the originators

of knowledge spillovers do not internalize the effect of spillovers on others’ R&D and

production processes. In the frames of this model, this assumption is necessary in order

to give such a market-based interpretation to knowledge spillovers. The choice of the

interpretation is a matter of taste.

In practice, licensing and spillovers tend to coexist in high-tech industries. These

setups are then polar cases. This sharpens the comparison of inference (see Appendix

E.3 for a setup where there are knowledge licensing and spillovers).

Similar to λ, the design of a high-tech good can be viewed as knowledge/patent. It

needs to be assumed that (at least for some time) the knowledge about the design of

high-tech goods cannot be used by other firms without appropriate compensation, in

order to guarantee that high-tech firms have incentives to innovate. Any high-tech firm,

nevertheless, could sell the design of its good at market value: the discounted sum of

profit streams. Therefore, the assumption that intellectual property regulation enforces

excludability of knowledge λ and grants the bargaining power to the licensors seems to

be more consistent in such a setup.8

Optimal Problem

The revenues of high-tech firm j are gathered from the supply of its good (xj) and when

there is knowledge licensing from the supply of its knowledge (uj,iλj; ∀i 6= j). The costs

are the labor compensations and license fees when there is knowledge licensing. The

profits of high-tech firm j are given by

πj = pxjxj − w
(

Lxj + Lrj
)

(13)

+

[

N
∑

i=1,i 6=j

puj,iλj (uj,iλj)−
N
∑

i=1,i 6=j

pui,jλi (ui,jλi)

]

,

8It might be insightful to assess the impact of intellectual property regulation which affects both the
excludability of λ and the duration of rights/patent on x. This is left for future research.
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where the term in square brackets appears when there is knowledge licensing, and puj,iλj
and pui,jλi are the license fees for uj,iλj and ui,jλi.

The high-tech firm maximizes the present discounted value Vj of its profit streams.

For brevity, I assume that high-tech firms choose the prices of their products and in that

sense engage in a generalized type of Bertrand competition (see Jerbashian, 2014, for

Cournot competition). Therefore, the problem of high-tech firm j is

Vj (t̄) = max
pxj ,Lrj

,{uj,i,ui,j}
N
i=1;(i 6=j)







+∞
∫

t̄

πj (t) exp

[

−
t
∫

t̄

r (s) ds

]

dt







s.t.

(6), (9), (13), and either (10) or (11),

where t̄ is the entry date and λj (t̄) > 0 is given.

The solution of the optimal problem implies that the supply of high-tech good xj and

the demand for labor for R&D are given by

w = λjpxj

(

1−
1

ej

)

, (14)

w = qλj
λ̇j
Lrj

, (15)

where ej is the elasticity of substitution between high-tech goods perceived by the high-

tech firm and qλj is the shadow value of knowledge accumulation.

It can be shown that

ej = ε−









(ε− 1) p1−εxj

N
∑

i=1

p1−εxi









. (16)

The term in square brackets in (16) measures the extent of strategic interactions among

high-tech firms, which create a wedge between e and the actual elasticity of substitution ε.

Therefore, it measures some of the distortions in the economy which stem from imperfect

competition with a finite number of high-tech firms. The term in square brackets and

these distortions tend to zero when the number of firms increases.

In the case when there is knowledge licensing, the returns on R&D are given by

q̇λj
qλj

= r −

(

ej − 1

ej

pxj
qλj

Lxj +
∂λ̇j
∂λj

+
N
∑

i=1,i 6=j

puj,iλjuj,i

qλj

)

, (17)

where the first term in brackets is the benefit from accumulating knowledge in terms of

increased output. The second term is the benefit in terms of higher amount of knowledge
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available for subsequent R&D:

∂λ̇j
∂λj

= ξ

[

1 + (1− α)
N
∑

i=1,i 6=j

(

ui,jλi
λj

)α
]

Lrj . (18)

The third term is the benefit in terms of increased amount of knowledge that can be

licensed.

The demand for, and the supply of knowledge, in this case are given by

pui,jλi = qλjξα

(

λj
ui,jλi

)1−α

Lrj , ∀i 6= j, (19)

uj,i = 1, ∀i 6= j, (20)

which means that the firm has a downward sloping demand for knowledge and licenses

(supplies) all its knowledge.

In the case when there are knowledge spillovers among high-tech firms, the returns

on R&D are given by (17) but

puj,iλj = 0, ∀i, (21)

and
∂λ̇j
∂λj

= ξ (1− α)

[

N
∑

i=1

(

λi
λj

)α]

Lrj . (22)

The first expression means that the licensees receive knowledge (patents) for free. In turn,

there is a difference between (18) and (22) because when there is knowledge licensing the

returns to R&D are fully appropriated within high-tech firms.

The expression for the price of knowledge (19) indicates that the licensees pay a

fixed fee for it. The fee is equal to their marginal valuation of the knowledge that

they acquire. This valuation includes all future benefits from using that knowledge for

augmenting their current knowledge. Therefore, the licensors appropriate all the benefit

from licensing knowledge (i.e., they make the ‘take it or leave it’ offer). With a continuous

accumulation of knowledge, as given by (10), at each and every instant the licensees

acquire new knowledge at a fixed fee.

From (19) it follows that puj,iλj declines with λj. It is clear from (17) that I have

assumed that the firm treats puj,iλj as exogenous and does not take into account this effect

while accumulating knowledge. In this sense, I focus on a perfect market for knowledge

where the price of knowledge is equal to its marginal product and the licensors appropriate

all benefits.

In the frames of this model, the assumption that the licensors of knowledge do not take

into account that their knowledge is used for stealing business amounts to assuming that

firm j takes qλi as exogenous for any i different than j. This is in line with assuming that

it takes puj,iλj as exogenous (see for the case when it takes into account puj,iλj Appendix

11



E.4).

Finally, in equilibrium there is no difference if high-tech firms license their knowl-

edge in return to wealth transfer or knowledge of other firms. Therefore, knowledge

licensing among high-tech firms can also be thought to resemble patent consortia and

cross-licensing.9

Firm Entry

I focus on two regimes of entry into the high-tech industry. In the first regime there

are exogenous barriers to entry (i.e., there is no entry) and all firms in the market are

assumed to have entered at t = 0. In the second regime there are no barriers to entry.

Moreover, entry entails no costs (for a setup with endogenous sunk costs, see Jerbashian,

2014, 2015).

3 Features of the Dynamic Equilibrium

I restrict the attention to a symmetric equilibrium in the high-tech industry, and denote

the growth rate of a variable Z by gZ . For subsequent analysis it is useful to define an

indicator function I1S.2 as

I1S.2 =

{

1 for S.2,

0 otherwise.

From (10), (11), and (12) it follows that the growth rate of knowledge/productivity

in both setups can be written as

gλ = ξNLr. (23)

The rate of return on knowledge accumulation can be derived from the optimal rules

of the high-tech firm (14), (15), and (17)-(22). It is given by

gqλ = r − gλ

(

Lx
Lr

+ 1− αI1S.2

)

. (24)

This expression determines the allocation of labor to R&D in a high-tech firm relative

to the allocation of labor to production. This ratio does not (explicitly) depend on

competitive pressure in the high-tech industry because high-tech firms decide on the

division of labor between production and R&D internally and Lx and Lr are paid the

same wage.

From the high-tech firm’s demand for labor for production (14), the representative

final goods producer’s optimal rules (4)-(5), and the relation between PXX and pxx (7)

9At this level of abstraction, the license fees can also be thought to represent patent citations.
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follows a relationship between NLx and LY :

NLx =
σ

1− σ
bLY , (25)

where

b =
e− 1

e
, (26)

e = ε−
ε− 1

N
. (27)

This relationship takes into account the effect of price setting by high-tech firms. Ac-

cording to (26) and (27), LY /NLx declines with the number of firms N and ε. This is

because increasing N and ε reduces mark-ups and the relative price of x, which increases

NLx. Meanwhile, final goods producers substitute X for LY which reduces LY .

The relationship between NLx and LY (25) together with the labor market clearing

condition,

L = LY +N (Lx + Lr) , (28)

implies a relationship between NLx and NLr:

NLx = D (L−NLr) . (29)

In this expression, D is equal to

D =
σ (e− 1)

e− σ
.

It measures the effect of competitive pressures in the high-tech industry on allocations of

labor force.

In the final goods market it must be that

Y = C.10 (30)

Entry Regime 1: Barriers to Entry

I take N > 1 and allow profits π in (13) to be negative. This is needed in order to

characterize the behavior of growth rates and allocations for any N > 1 and ε. It can be

supported by subsidies, for example.

Let the consumers be sufficiently patient so that θ ≥ 1, which is a standard stability

condition in multi-sector endogenous growth models and seems to be the empirically

10The main innovation of this paper is that it models knowledge licensing among high-tech firms. In
the remainder of the text, I highlight the main innovation and its implications. The remainder of the
properties of the framework can be found well characterized in Smulders and van de Klundert (1995),
van de Klundert and Smulders (1997), Peretto (1998a,b), Peretto and Smulders (2002), amongst others.

13



relevant case. Moreover, let the following parameter restriction hold for any N :

ξDL > ρ. (31)

This inequality ensures that the inter-temporal benefit from allocating labor force to

R&D outweighs its cost. It is a necessary condition for having an interior solution for

labor force allocation to R&D. The following proposition offers equilibrium labor force

allocations and growth rates. I use NE superscript to denote the case when there is no

entry.

Proposition 1. In decentralized equilibrium in both S.1 and S.2 setups, the economy

makes a discrete jump to a balanced growth path where labor force allocations and growth

rates of final output and knowledge/productivity are given by

NLNEr =
1

ξ

ξDL− ρ

(θ − 1) σ + αI1S.2 +D
, (32)

NLNEx = D
(

L−NLNEr
)

, (33)

LNEY = L−NLNEx −NLNEr , (34)

and

gNEY = σgNEλ , (35)

gNEλ =
ξDL− ρ

(θ − 1) σ + αI1S.2 +D
. (36)

The interaction between α and I1S.2 measures the extent of non-appropriated returns

on R&D in the case when there are knowledge spillovers compared to the case when

there is knowledge licensing. Clearly, the growth rates of knowledge and final output,

gNEλ and gNEY , decline with αI1S.2. Therefore, high-tech firms innovate more and the

economy grows at a higher rate when there is knowledge licensing: gNE,S.1λ > gNE,S.2λ and

gNE,S.1Y > gNE,S.2Y .

Total (consumer) welfare can be found using the household’s life-time utility function,

(30), and the fact that the economy is always on a balanced growth path. A monotonic

transformation of the welfare function, which preserves only the relevant terms, is given

by

ŪNE = −
[

N
σ

ε−1

(

NLNEx
)σ (

LNEY
)1−σ

]−(θ−1) 1

(θ − 1) σgNEλ + ρ
.

Proposition 2. Welfare is higher when there is knowledge licensing than when there are

knowledge spillovers.

In a given instant, ceteris paribus the final output is lower when there is knowledge
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licensing than when there are knowledge spillovers according to (33) and (34). This result

then holds because welfare increases with the growth rate of final output, gY , which is

proportional to the growth rate of knowledge/productivity, gλ.
11 For brevity, hereafter I

solely discuss the results for gλ while keeping in mind that gY is proportional to it.

Corollary 1. In both S.1 and S.2 setups, the growth rate of knowledge/productivity gλ

increases with the elasticity of substitution between high-tech goods ε and the number of

high-tech firms N . Moreover, it is a concave function of ε and N .

The driver behind these results are the relative price distortions, which are due to

price setting by high-tech firms. These distortions increase the demand for labor in final

goods production. Increasing the elasticity of substitution and/or the number of firms

reduces these distortions and motivates final goods producers to substitute (a basket of)

high-tech goods for labor. Higher demand for high-tech goods and higher amount of

available labor increase the incentives of high-tech firms to conduct R&D in line with

(24). This increases gλ.

The next section compares these decentralized equilibrium results with the first best

allocations and growth rates.

Social Optimum

The hypothetical Social Planner selects the paths of quantities so as to maximize the

lifetime utility of the household. The Social Planner solves the following problem:

max
Lx,Lr







+∞
∫

0

C1−θ
t − 1

1− θ
exp (−ρt) dt







s.t.

C =
(

N
ε

ε−1λLx

)σ

[L−N (Lx + Lr)]
1−σ , (37)

λ̇ = ξλNLr, (38)

λ (0) > 0.

The following proposition offers the Social Planner’s allocations and growth rates,

where SP superscript is used to make a distinction between these outcomes and the

decentralized equilibrium outcomes.

Proposition 3. The Social Planner chooses labor force allocations so that the economy,

11Appendix E.5 shows that in a second generation growth model welfare can be lower when there is
knowledge licensing than when there are knowledge spillovers. This holds because the growth rate of
final output in such a model does not depend on innovation incentives and allocations.
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where there is “no entry”, makes a discrete jump to a balanced growth path, where

NLNE,SPr =
1

ξ

ξσL− ρ

θσ
, (39)

NLNE,SPx = σ
(

L−NLNE,SPr

)

, (40)

LNE,SPY = L−NLNE,SPx −NLNE,SPr (41)

and

gNE,SPY = σgNE,SPλ , (42)

gNE,SPλ =
ξσL− ρ

θσ
. (43)

The Social Planner necessarily innovates if ξσL > ρ, which holds as long as (31) holds

since σ > D. As in decentralized equilibrium, this inequality states that the benefit from

R&D outweighs its cost.

Corollary 2. In decentralized equilibrium, the economy innovates less than is socially

optimal and therefore grows at a lower rate: gNE,SPλ > gNE,S.1λ . Moreover, it fails to have

socially optimal labor force allocations.

The drivers behind these results are the relative price distortions and knowledge

spillovers in the S.2 case. Due to these distortions final goods producers substitute

labor for high-tech goods, which lowers the output of high-tech firms and the number

of researchers these firms hire. The spillovers in R&D have an effect of similar direction.

If such spillovers are present then high-tech firms do not fully internalize the returns on

R&D, which reduces their incentives to invest in R&D.

The deviation of D from σ summarizes the differences among socially optimal and

decentralized equilibrium growth rates, and labor force allocations which stem from the

relative price distortions. It is easy to notice that for sufficiently high N

lim
ε→+∞

D = σ.

This equality holds because for sufficiently high N the limiting case ε = +∞ would im-

ply perfect competition in the high-tech industry. According to (32)-(36) and (39)-(43),

socially optimal and decentralized equilibrium allocations and growth rates would then

coincide when there is knowledge licensing. This is because high-tech firms fully appro-

priate the benefits from accumulation of knowledge when there is knowledge licensing

and there are no distortions in the market for knowledge.12

In such a limiting case, however, in decentralized equilibrium high-tech firms make

12At the limit when σ = 1, allocations and growth in the decentralized equilibrium are welfare maximizing
when there is knowledge licensing since there are no relative price distortions.
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no profits from the sale of their goods and have no market incentives to innovate. In this

respect, if there are no subsidies that keep the profits of high-tech firms non-negative,

the positive relationship between innovation and ε holds, as long as high-tech firms have

sufficient profits to cover the costs of R&D. Profits of high-tech firms and ε are inversely

related. Once profits net of R&D expenditures are equal to zero, increasing ε further

reduces innovation to zero. The relationship between intensity of product market com-

petition and innovation then resembles an “inverted-U” shape because of the concavity

of the relationship between innovation and ε and this discontinuity. Such a relation is

consistent with Schumpeter’s argument that firms need to be sufficiently large in order to

innovate. Moreover, it is in line with the empirical findings of Aghion, Bloom, Blundell,

Griffith, and Howitt (2005), and provides an alternative explanation for those findings.

Entry Regime 2: Cost-free Entry

From (13), (14), and (24) it follows that the profits of a high-tech firm are given by

π = wLxπ̄,

where

π̄ =
1

e− 1
−

gλ
r − gqλ − (1− αI1S.2) gλ

.

The economy is on a balanced growth path for a given N according to Proposition

1. On the balanced growth path, it is straightforward to show that π̄ is constant and

declines with N . In order to have a meaningful equilibrium, I assume that the parameters

are such that there exists N ∈ (1,+∞) where π̄ = 0 in both S.1 and S.2 setups (e.g., ε

is sufficiently high).

The condition that endogenizes the number of high-tech firms is

π̄ = 0 (44)

because entry into the high-tech industry entails no costs.

The number of high-tech firms, N , makes a discrete jump to the balanced growth path

equilibrium level at t = 0 given these assumptions and the above mentioned properties

of π̄. Therefore, in decentralized equilibrium with cost-free entry the economy is on a

balanced growth path for any t > 0, where Ṅ = 0. Labor force allocations and growth

rate of knowledge/productivity are given by (32)-(34) and (36), where N is endogenous.

It is determined from (27) and the following equation:

e =
ξσL [1 + αI1S.2 + (θ − 1) σ]

ξσL− ρ
. (45)
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In both S.1 and S.2 setups, there is unique N which satisfies this equation.13 It is

straightforward to show that the equilibrium number of firms declines with ε. This is

because higher ε implies lower mark-ups, which reduces π̄ for a given N . The growth

rate of knowledge gλ does not depend on ε and N since the right-hand side of (45) does

not depend on them. Therefore, higher ε entails no dynamic gains but static losses in

terms of N in this setup. These losses reduce welfare because of the love-for-variety

specification.14

Proposition 4. The growth rate of knowledge/productivity is higher when there is knowl-

edge licensing than when there are knowledge spillovers among high-tech firms: gCFE,S.1λ >

gCFE,S.2λ . However, there are fewer high-tech firms when there is knowledge licensing than

when there are knowledge spillovers among these firms: NCFE,S.1 < NCFE,S.2.

The latter result holds because R&D investments are fixed costs. High-tech firms in-

vest more in R&D when there is knowledge licensing. The number of firms in equilibrium

declines with these costs.

The reduction in the number of firms weakens competitive pressures and distorts

allocations in this framework. It also implies a lower variety of goods. Therefore, it

implies lower welfare because of love-for-variety in (2), and the following proposition

holds.

Proposition 5. Depending on model parameters, welfare when there is knowledge licens-

ing can be higher or lower than welfare when there are knowledge spillovers.

• Welfare is lower when there is knowledge licensing than when there are knowledge

spillovers if α is close to 0.

The love-for-variety specification plays an essential role in these results. It is shown

in the proof of Proposition 5 that it is the sole decisive factor for this welfare comparison

if α is close to zero. Welfare then is lower when there is knowledge licensing than when

there are knowledge spillovers because the number of high-tech firms and goods is lower.

Further, eliminating the love-for-variety by dividing Y to N
σ

ε−1 and setting θ = 1, it can

be shown that welfare is necessarily higher when there is knowledge licensing for any

α > 0. This result is confirmed for θ > 1 using numerical methods.

Similarly to the case when there is no entry, the decentralized equilibrium fails to

have socially optimal allocations and growth rates. Given that entry entails no costs, it

follows from Proposition 3 that the Social Planner selects labor force allocations and N

13If at t = 0 the number of high-tech firms is higher than the number determined by π̄ = 0 and ε− 1−α−
(θ − 1)σ > 0 then high-tech firms will exit the market till this condition is satisfied. Considering such a
setup, or exit of high-tech firms instead of entry, can support the zero entry costs assumption.

14Clearly, there are no welfare losses because of higher ε if there is no love-for-variety. Moreover, the result
that e in (45) does not depend on N and ε can be repealed if, for example, high-tech firms have fixed
operating costs.
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such that the economy makes a discrete jump to a balanced growth path. On this path

labor force allocations and growth rate of knowledge gλ are given by (39)-(41) and (43)

and N = +∞.15

Using (36), (45), and (43), it can be shown that the economy invests in R&D less

than is socially optimal in both S.1 and S.2 setups in decentralized equilibrium with cost-

free (endogenous) entry into the high-tech industry. Therefore, it grows at a lower than

socially optimal rate. Further, it fails to have the socially optimal number of high-tech

firms.

Policy Inference

In this section, I offer policies that if implemented in decentralized equilibrium lead

to the first best outcome. I assume that there is knowledge licensing in decentralized

equilibrium. This can amount to assuming that intellectual property rights regulation

enforces excludability of knowledge and gives the bargaining power to the licensors. In

this respect, such an action is one of the necessary policy instruments for increasing

welfare in decentralized equilibrium in this model.

I assume that the set of policy instruments includes constant marginal transfers on

the purchases of high-tech goods, τx. It also includes lump-sum transfers to high-tech

firms, Tπ, and to households, T . The latter balances government expenditures.

From the final goods producer’s problem it follows that under such a policy (6) and

(7) need to be rewritten as

xj = X

[

PX
(1− τx) pxj

]ε

,

PXX = (1− τx)
N
∑

i=1

pxixi.

In turn, T and Tπ need to be added to the budget constraint of the household (1) and

the profit function of high-tech firm j (13), correspondingly.

It can be shown that, in symmetric equilibrium, labor force allocations are given by

(32)-(34) where I1S.2 = 0 and

D =

[

(1− τx)
1− σ

σ

1

b
+ 1

]−1

. (46)

Therefore, it is sufficient to equate labor force allocations to R&D and high-tech goods

production to their socially optimal counterparts in order to obtain socially optimal allo-

cations and growth rates. Such an outcome can be achieved by subsidizing the purchases

15In order to solve the Social Planner’s optimal control problem with first order conditions C needs to be
rescaled so that C < +∞ at t = 0 (i.e., C needs to be divided to N

σ

ε−1 ).
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of high-tech goods and setting τx = 1/e, which equates D in (46) to σ.

In this setup, it is enough to subsidize the demand for high-tech goods because the

returns on knowledge accumulation are fully appropriated when there is knowledge li-

censing. Clearly, this result stems from the rather idealized setting for the market of

knowledge. Nevertheless, it implies that subsidies to in-house R&D, which are commonly

suggested in similar growth models (e.g., van de Klundert and Smulders, 1997), can

be complemented or replaced with intellectual property rights regulation which enforces

excludability of knowledge and gives the bargaining power to the licensors.

Although under this policy labor force allocations and growth rate of knowledge in

decentralized equilibrium are equal to their socially optimal counterparts, welfare is not.

In decentralized equilibrium, there is a lower number of high-tech firms/goods under the

assumption that π̄ = 0 at N < +∞.16 The policy instrument which can correct for this

is Tπ. It is straightforward to show that it is sufficient to set Tπ = wLxτπ, where τπ is

such that for any finite N the profits of firms are greater than zero but for N = +∞

profits are zero.

Corollary 3. τπ is a subsidy and it is given by

τπ =
(ε− 1) 1

σ
(ξσL− ρ)− [(θ − 1) ξσL+ ρ]

(ε− 1) [(θ − 1) ξσL+ ρ]
.

This implies that entry into the high-tech industry needs to be subsidized. Such

subsidies are in the spirit of welfare improving R&D subsidies in the model of Romer

(1990) to the extent that entry can be thought to be a result of R&D that generates new

types of goods.

4 Conclusions

The model presented in this paper incorporates knowledge (patent) licensing into a styl-

ized endogenous growth framework, where the engine of growth is high-tech firms’ in-

house R&D. The inference from this model suggests that, if there is knowledge licensing,

high-tech firms innovate more and economic growth and welfare are higher than when

there are knowledge spillovers among these firms. The results also suggest that innova-

tion in the high-tech industry, as well as economic growth, increase with the intensity of

competition and the number of firms in that industry.

If entry is endogenous and entails no costs, innovation in the high-tech industry, and

economic growth, are again higher when there is knowledge licensing. However, this hap-

pens at the expense of a lower number of high-tech firms. Welfare then is not necessarily

16Clearly, the number of firms in decentralized equilibrium is equal to the socially optimal number of firms
if π̄ = 0 at N = +∞.
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higher when there is knowledge licensing than when there are knowledge spillovers be-

cause of this and love-for-variety. If there is no love-for-variety, then knowledge licensing

delivers higher welfare.

Increasing the intensity of competition reduces the number of high-tech firms. How-

ever, it does not affect allocations, innovation in the high-tech industry, and economic

growth. Therefore, if there is no love-for-variety, increasing the intensity of competition

reduces welfare in this setup.

Taken together, these results suggest that intellectual property regulation which fa-

cilitates excludability of knowledge and motivates knowledge licensing increases the rate

of economic growth. It also increases welfare if the number of firms is fixed and/or there

is no love-for-variety. It can reduce welfare when the number of firms is endogenous and

there is love-for-variety.

A policy consisting of four instruments can be sufficient for achieving the first best

outcome in decentralized equilibrium. The policy gives the bargaining power in the

market for knowledge to the licensors so that they appropriate all the benefit from their

R&D. Further, it offsets the relative price distortions with subsidies on the purchases of

high-tech goods. Finally, it subsidizes entry into the high-tech industry and uses non-

distorting taxes to cover all these subsidies.
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Appendix - Proofs

Proof of Proposition 1: The growth rates of quantities and prices which characterize

the essential dynamics of this model can be obtained from the Euler equation, (2)-(7),

(9), (14), and (15). These growth rates are

gC = gY , (47)

gC =
1

θ
(r − ρ) , (48)

gY = σgX + (1− σ) gLY
, (49)

gX = gx, (50)

gY = gw + gLY
, (51)

gx = gλ + gLx
, (52)

gw = gqλ + gλ. (53)

Combining (24) with (14), (15), (23), (25), (28), (29), (47), and (48)-(53) gives a

differential equation in Lr:

L̇r =
L−NLr
Nθ

(54)

×
{[

(θ − 1) σ + αI1S.2 +D
]

ξNLr − (ξDL− ρ)
}

,

for both S.1 and S.2 setups.

Let parameter restriction (31) hold. The first term of the differential equation (54)

is non-negative. Without that term, the characteristic root of the differential equation

is positive, ∂L̇r/∂Lr > 0. This, together with a neoclassical production function of final

goods (2), implies that there is a unique Lr such that (54) is stable and NLr, NLx, LY ∈

(0, L):

LNEr =
1

ξN

ξDL− ρ

(θ − 1) σ + αI1S.2 +D
.

Combining this expression with the relations between NLx and LY (25) and NLx and

NLr (29) gives the equilibrium allocations of labor force (32)-(34). Given that allocations

of labor force are constant from (47), (49), and (52) it follows that

gNEC = gNEY = gNEw = σgNEX ,

gNEX = gNEx = gNEλ ,

where gλ is given by (23). Therefore, in decentralized equilibrium with no entry the

economy makes a discrete jump to a balanced growth path in both S.1 and S.2 setups, if

(31) holds.
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Proof of Proposition 2: The households own the firms. Total (consumer) welfare can

be derived using the expressions for final output and budget constraint. It is given by

U = −

[

N
σ

ε−1 (NLx)
σ L1−σ

Y

]−(θ−1)

θ − 1

1

(θ − 1) σgλ + ρ
[λ (0)]−σ(θ−1) +

1

ρ

1

θ − 1
.

For further analysis, I consider the following positive monotonic transformation of U :

Ū = (θ − 1) [λ (0)]σ(θ−1)

(

U −
1

ρ

1

θ − 1

)

(55)

= −
[

N
σ

ε−1 (NLx)
σ L1−σ

Y

]−(θ−1) 1

(θ − 1) σgλ + ρ
.

To skip unnecessary notation, I set I1S.2 ≡ 1 and rewrite

NLNEr =
1

ξ

ξDL− ρ

(θ − 1) σ + α +D
,

NLNEx = D
[(θ − 1) σ + α]L+ 1

ξ
ρ

(θ − 1) σ + α +D
,

LNEY =
1− σ

σb
D
[(θ − 1) σ + α]L+ 1

ξ
ρ

(θ − 1) σ + α +D
.

The cases of knowledge licensing and spillovers then correspond to α = 0 and α > 0 in

these expressions.

It is sufficient to consider the sign of the following derivative in order to compare wel-

fare when there is knowledge licensing with welfare when there are knowledge spillovers:

1

θ − 1

1

−Ū

∂Ū

∂α
= σ

1

NLx

∂NLx
∂α

+ (1− σ)
1

LY

∂LY
∂α

+
σ

(θ − 1) σgλ + ρ

∂gλ
∂α

.

If this expression is positive (negative) then welfare is lower (higher) when there is knowl-

edge licensing than when there are knowledge spillovers.

It is straightforward to show that the sign of this derivative is equivalent to the sign

of the following expression:

− (θ − 1) σξ (σ −D)L− (σ −D) ρ− α (ξσL− ρ) ,

which is negative. Therefore, welfare is higher in case when there is knowledge licensing

than when there are knowledge spillovers.
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Proof of Corollary 1: The partial derivatives of gNEλ with respect to ε and N are

given by

∂gNEλ
∂ε

=
∂D

∂ε

∂

∂D

ξDL− ρ

(θ − 1) σ + αI1S.2 +D
,

∂gNEλ
∂N

=
∂D

∂N

∂

∂D

ξDL− ρ

(θ − 1) σ + αI1S.2 +D
.

From (26), (27), and the expression for D it follows that

∂D

∂ε
=

(

1−
1

N

)

σ
(1− σ)

(e− σ)2
,

∂D

∂N
=
ε− 1

N2
σ

1− σ

(e− σ)2
.

Clearly, both these expressions are positive. In turn, the second term in the first order

partial derivatives of gNEλ is given by

∂

∂D

ξDL− ρ

(θ − 1) σ + αI1S.2 +D
=
ξL [(θ − 1) σ + αI1S.2] + ρ

[(θ − 1) σ + αI1S.2 +D]
2 .

This is also positive. Therefore, gNEλ increases with ε and N .

The second order partial derivatives of gNEλ with respect to ε and N are given by

∂2gNEλ
∂ε2

=
∂2D

∂ε2
∂

∂D

ξDL− ρ

(θ − 1) σ + αI1S.2 +D
+

(

∂D

∂ε

)2
∂2

∂D2

ξDL− ρ

(θ − 1) σ + αI1S.2 +D
,

∂2gNEλ
∂N2

=
∂2D

∂N2

∂

∂D

ξDL− ρ

(θ − 1) σ + αI1S.2 +D
+

(

∂D

∂N

)2
∂2

∂D2

ξDL− ρ

(θ − 1) σ + αI1S.2 +D
,

where

∂2D

∂ε2
= −2

(

1−
1

N

)2

σ
(1− σ)

(e− σ)3
,

∂2D

∂N2
= −2

[

ε− 1

N3
σ

1− σ

(e− σ)2
+

(

ε− 1

N2

)2

σ
(1− σ)

(e− σ)3

]

,

∂2

∂D2

ξDL− ρ

(θ − 1) σ + αI1S.2 +D
= −2

ξL [(θ − 1) σ + αI1S.2] + ρ

[(θ − 1) σ + αI1S.2 +D]
3 .

This implies that gNEλ is a concave function of ε and N .
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Proof of Proposition 3: It is straightforward to show that the Social Planner’s opti-

mal choices for Lx and Lr and returns on R&D are given by

NLx = σ (L−NLr) , (56)

qλξNλ =
(1− σ)N

L−N (Lx + Lr)
C1−θ, (57)

q̇λ = qλρ−
(

qλξNLr + σλ−1C1−θ
)

. (58)

The optimal choice of Lx (56) together with the labor market clearing condition (28)

implies that

NLx =
1

1− σ
σLY . (59)

This relation is the counterpart of (25).

Using (57), the expression for the returns on R&D (58) can be rewritten as

gqλ = ρ− [(1− σ) ξNLr + ξσL] . (60)

Meanwhile, from (28), (37), (38), and (56)-(58) it follows that

gLx
= gLY

= −
NL̇r

L−NLr
, (61)

gC = σ (gλ + gLx
) + (1− σ) gLx

, (62)

gλ = ξNLr, (63)

gqλ = −gλ − gLx
− (θ − 1) gC . (64)

Combining (60) and (61)-(64) gives a differential equation in Lr,

L̇r =
L−NLr
θN

[θσξNLr − (ξσL− ρ)] . (65)

Without the first non-negative term this expression implies that ∂L̇r/∂Lr > 0. Therefore,

there is a unique Lr such that (65) is stable and NLr ∈ (0, L):

NLNE,SPr =
1

ξ

ξσL− ρ

θσ
. (66)

Combining (66) with (56) and (59) gives the socially optimal (interior) allocations of

labor force (39)-(41).

Given that labor force allocations are constant from (30) and (61)-(64) it follows that

gNE,SPY can be derived from (37):

gNE,SPY = σgNE,SPλ ,
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where gNE,SPλ is given by (43). Therefore, the Social Planner chooses the allocations so

that the economy, where there is “no entry”, makes a discrete jump to a balanced growth

path.

Proof of Corollary 2: The comparison between gλ in decentralized equilibrium and

socially optimal gλ is equivalent to the following comparison

ξDL− ρ

(θ − 1) σ +D
∗
ξσL− ρ

θσ
.

The left-hand side increases with D, which is lower than σ. Therefore, gNE,SPλ > gNE,S.1λ .

It is clear from (32)-(34) and (39)-(41) that the decentralized economy fails to have

socially optimal labor force allocations.

Proof of Proposition 4: The perceived elasticity of substitution is given by (45) and

D = σ (e− 1) / (e− σ). To prove this proposition I consider the partial derivative of gλ

with respect to α. It is given by

∂gλ
∂α

=
(θ − 1) σξL∂D

∂α
+ αI1S.2ξL

∂D
∂α

− (ξDL− ρ) I1S.2 + ρ∂D
∂α

[(θ − 1) σ + αI1S.2 +D]
2 .

Therefore, the sign of ∂gλ/∂α is equivalent to the sign of

(θ − 1) σξL
∂D

∂α
+ αI1S.2ξL

∂D

∂α
− (ξDL− ρ) I1S.2 + ρ

∂D

∂α
, (67)

where

D =
ξσL [αI1S.2 + (θ − 1) σ] + ρ

ξL [1− σ + αI1S.2 + (θ − 1) σ] + ρ
,

∂D

∂α
=

ξLI1S.2 (1− σ) (ξσL− ρ)

{ξL [1− σ + αI1S.2 + (θ − 1) σ] + ρ}
2 .

Using these expressions and manipulating (67) gives the following expression:

ξL (1− σ)−
{

ξL
[

1− σ + αI1S.2 + (θ − 1) σ
]

+ ρ
}

,

which has a negative value. This implies that gλ declines with α and gCFE,S.1λ > gCFE,S.2λ .

In turn, NCFE,S.1 < NCFE,S.2 since the left-hand side of (45) increases with N and

the right-hand side of (45) increases with αI1S.2.
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Proof of Proposition 5: Total welfare is given by (55), where

N =
(ε− 1) (ξσL− ρ)

ε (ξσL− ρ)− ξσL [1 + αI1S.2 + (θ − 1) σ]
,

D =
ξσL [(θ − 1) σ + αI1S.2] + ρ

ξL [1− σ + αI1S.2 + (θ − 1) σ] + ρ
,

b =
ξσL [αI1S.2 + (θ − 1) σ] + ρ

ξσL [1 + αI1S.2 + (θ − 1) σ]
.

The partial derivatives of N , D, and b with respect to α are given by

∂N

∂α
= N

ξσL

ε (ξσL− ρ)− ξσL [1 + αI1S.2 + (θ − 1) σ]
,

∂D

∂α
=

ξL (1− σ) (ξσL− ρ)

{ξL [1− σ + αI1S.2 + (θ − 1) σ] + ρ}
2 ,

∂b

∂α
=

ξσL (ξσL− ρ)

{ξσL [1 + αI1S.2 + (θ − 1) σ]}
2 .

To avoid unnecessary notation, I set I1S.2 ≡ 1. The comparison of welfare between the cases

of knowledge licensing and spillovers is equivalent to the sign of the following derivative:

1

θ − 1

1

−Ū

∂Ū

∂α
=

σ

ε− 1

1

N

dN

dα
+ σ

1

NLx

dNLx
dα

(68)

+ (1− σ)
1

LY

dLY
dα

+ σ
1

(θ − 1) σgλ + ρ

dgλ
dα

.

This expression can be rewritten as

1

θ − 1

1

−Ū

∂Ū

∂α
=

σ

ε− 1

1

N

∂N

∂α

+

[

σ
1

NLx

∂NLx
∂D

+ (1− σ)
1

LY

∂LY
∂D

+ σ
1

(θ − 1) σgλ + ρ

∂gλ
∂D

]

∂D

∂α

+ (1− σ)
1

LY

∂LY
∂b

∂b

∂α

+ σ
1

NLx

∂NLx
∂α

+ (1− σ)
1

LY

∂LY
∂α

+ σ
1

(θ − 1) σgλ + ρ

∂gλ
∂α

,

The first term expresses the change of welfare that stems from the change in the number of

firms. It represents the love-for-variety effect. It is positive since N increases with α. The

second term expresses the change of welfare that stems from the change in competitive

pressures on allocations of labor force. Competitive pressures increase with α since so

does N , and the second term is positive. The third term accounts for the shift of labor

force allocation in final goods production because of changes in competitive pressure in

the high-tech industry. It is negative since higher α implies a higher number of firms
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and substitution of high-tech goods for labor in the final goods production. Finally, the

last three terms account for changes of welfare because of innovation incentives in the

high-tech industry. It has been shown that, in the case when there is no entry, the sum

of the last three terms is negative (see the proof of Proposition 2).

I denote the sum of the second and third terms as CP - competitive pressure. It is

straightforward to show that it can be written as:

1

(ξσL− ρ) (1− σ)
CP =

{

ξL [1− σ + α + (θ − 1) σ] + ρ

ξσL [(θ − 1) σ + α] + ρ

(θ − 1) σ + α

(θ − 1) σ + α +D

+
σ

ξDL (θ − 1) σ + (α +D) ρ

ξL [(θ − 1) σ + α] + ρ

(θ − 1) σ + α +D

}

×
ξL

{ξL [1− σ + α + (θ − 1) σ] + ρ}2

−
1

ξσL [α + (θ − 1) σ] + ρ

1

1 + α + (θ − 1) σ
.

In turn, I use II - innovation incentives - to denote the sum of the last three terms.

It can be shown that around α = 0 the expression above becomes

1

(ξσL− ρ) (1− σ)
CP =

1

ξσL (θ − 1) σ + ρ

1

1 + (θ − 1) σ

σξL− ρ

(θ − 1) σξL+ ρ
,

and

1

(ξσL− ρ) (1− σ)
II = −

1

ξσL (θ − 1) σ + ρ

1

(θ − 1) σξL+ ρ

ξσL− ρ

1 + (θ − 1) σ
.

Therefore, around α = 0 the partial derivative of Ū with respect to α is given by

1

θ − 1

1

−Ū

∂Ū

∂α
=

σ

ε− 1

1

N

∂N

∂α
.

This means that, for small values of α, the variation in welfare because of variation in α

stems solely from the love-for-variety effect. This effect is positive. Therefore, welfare is

higher when there are knowledge spillovers than when there is knowledge licensing among

high-tech firms for small values of α. Clearly, if the love-for-variety effect was absent then

∂Ū/∂α = 0 for small values of α.

In what follows, I focus on the case of logarithmic instantaneous utility function setting

θ = 1. In this case,

1

(ξσL− ρ) (1− σ)
CP =

[

ξL (1− σ + α) + ρ

ξσLα + ρ

α

α +D
+

σ

(α +D) ρ

ξLα + ρ

α +D

]

×
ξL

{ξL (1− σ + α) + ρ}2
−

1

ξσLα + ρ

1

1 + α
,
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and

II = −
ξDL− ρ

α +D

α (ξσL− ρ) + (σ −D) ρ

(αξL+ ρ) (α +D) ρ
,

D =
ξσLα + ρ

ξL (1− σ + α) + ρ
.

Therefore, with some abuse of notation, (68) can be rewritten as

1

θ − 1

1

−Ū

∂Ū

∂α
=

σ

ε− 1

ξσL

ε (ξσL− ρ)− ξσL (1 + α)
(69)

−
ασ (ξσL− ρ) (ξσL− ρ)

(ξσLα + ρ) (1 + α)2 ρ
.

Clearly, when there is no love-for-variety effect then ∂Ū/∂α < 0 for any value of α which

is greater than 0. Therefore, welfare is higher when there is knowledge licensing than

when there are knowledge spillovers for α > 0 if there is no love-for-variety effect.

This result is confirmed using numerical methods. In the numerical exercise, the

values of parameters were selected from the following intervals:

ρ ∈ [0.01, 0.09] ; θ ∈ [1, 10] ;

ε ∈ [1.5, 5] ; σ ∈ [0.01, 0.99] ;

α ∈ [0.01, 0.99] ; ξL ∈ [0.01, 0.99] .

In this exercise, I form a multidimensional grid of parameter values using 10 equidistant

points from each interval. I perform the exercise for those points from that multidimen-

sional grid which satisfy parameter restriction (31) and N > 1.

In general, the sign of ∂Ū/∂α from (69) depends on model parameters. For example,

it is positive (negative) for relatively small (large) values of ε and α. Therefore, the sign

of ∂Ū/∂α when θ > 1 also depends on model parameters.

I perform a naive calibration exercise to pin-down the values of model parameters

keeping θ = 1. I use 2-digit (NAICS) industry-level data for the US. The data come from

the EU KLEMS database (release 2009, revision 2010). High-tech industries are NAICS

24, 29–25, and 64, and the sample period is 1977–2007.

To simplify the notation, I denote γ = ρ/ξσL and rewrite (69) as

1

θ − 1

1

−Ū

∂Ū

∂α
= σ

(α + γ) γ (1 + α)2 − α (1− γ)2 (ε− 1) [ε (1− γ)− (1 + α)]

(ε− 1) [ε (1− γ)− (1 + α)] (α + γ) (1 + α)2 γ
. (70)

I set ρ = 0.01. In order to calibrate σ, I use the share of real value added in high-tech

industries out of total industrial output averaged over the sample period. This implies

that σ = 0.1305. Further, in order to calibrate α, I use the growth rate of real value added
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in high-tech industries, averaged over the sample period. This implies that gλ = 0.044.

I normalise the scale of the economy and set ξL = 0.5 so that the value of α is not

extra-ordinarily high. The value of α is then 0.259. This implies that the share of a

firm’s knowledge input in its R&D process is 0.741.

In order to pin-down ε, I set N = 10. The elasticity of substitution between high-tech

goods is then equal to 1.541. The numerator of (70) is then equal to 0.096. Therefore,

under these parameter values welfare is lower when there is knowledge licensing than

when there are knowledge spillovers. This result tends to be not sensitive to the value

of N as long as N > 2. When, for example, N = 1.5 then ε = 2.461 and the numerator

of (70) is equal to −0.1236. Therefore, in such a case welfare is higher when there is

knowledge licensing than when there are knowledge spillovers.

Proof of Corollary 3: I use superscript GO to denote decentralized equilibrium with

government. Suppose that τx = 1/e so that allocations of labor force in decentralised

equilibrium coincide with the socially optimal allocations. The subsidy/tax rate τπ can

be derived from zero profit condition π̄GO = 0 where

π̄GO =
1

ε− 1
−
NLSPr
NLSPx

+ τπ,

NLSPr
NLSPx

=
1

σ

ξσL− ρ

(θ − 1) ξσL+ ρ
.

Therefore,

τπ =
NLSPr
NLSPx

−
1

ε− 1

=
(ε− 1) 1

σ
(ξσL− ρ)− [(θ − 1) ξσL+ ρ]

[(θ − 1) ξσL+ ρ] (ε− 1)
.

The assumption that π̄ = 0 holds at N ∈ (1,+∞) implies the following parameter

restriction:

ε >
ξσL [1 + αI1S.2 + (θ − 1) σ]

ξσL− ρ
. (71)

This parameter restriction implies that τπ > 0 so that it is a subsidy.

Under this policy, the budget constraint of the household is given by

C = Nπ + wL−NTπ − τxNpxx.

It is straightforward to show that the right-hand side of this expression is equal to Y .

It has to be that Y GO = Y SP since under this policy labor force allocations are equal

to the socially optimal allocations and N = +∞. This implies that UGO = USP .
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Appendix - Extensions

Appendix E.1

In this section, I present a setup where high-tech firms cooperate in R&D and select

optimal rules for R&D so as to maximise joint profits. High-tech firms later compete in

the product market. I call this case CO - R&D cooperation.

I offer below the setup of the high-tech industry and the optimization problem of

high-tech firms in the stage of R&D cooperation.

R&D Cooperation: Each high-tech firm has its knowledge. At the R&D cooperation

stage high-tech firms establish a research joint venture where they pool their knowledge

and jointly hire researchers. In a “laboratory,” a group of researchers combines the

knowledge of different firms in order to produce a better one for each firm. There are as

many laboratories (or different knowledge production processes) as there are high-tech

firms. This research joint venture takes into account the effect of the accumulation of

one type of knowledge on the accumulation of other types of knowledge.17

In such a case, high-tech firms take (14) and initial values of λ as given and jointly

solve the following optimal problem:

max
NLr







+∞
∫

t̄

N
∑

i=1

πj (t) exp

[

−
t
∫

t̄

r (s) ds

]

dt







s.t.

N
∑

i=1

πj =
N
∑

i=1

(pxiλi − w)Lxi − wNLr, (72)

xj = λjLxj , (73)

λ̇j = ξ

(

N
∑

i=1

λαi

)

λ1−αj Lrj . (74)

The optimal rules for R&D that follow from this problem are

w = qλj
λ̇j
Lrj

, (75)

q̇λj
qλj

= r −

(

N
∑

j=1

ej − 1

ej

pxj
qλj

Lxj +
∂λ̇j
∂λj

)

, (76)

17An alternative cooperation mode is that high-tech firms in the R&D stage jointly hire researchers and
produce the same knowledge for all. In such a case the R&D process is λ̇ = ξλNLr. It can be easily
shown that the decentralised equilibrium outcome of this cooperation mode is no different than the
outcome of the cooperation mode offered in this section.
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where

∂λ̇j
∂λj

= ξLrj (77)

×

{

1 + (1− α)

(

N
∑

i=1,i 6=j

λi
λj

)α

+ α

[

N
∑

i=1,i 6=j

(

λi
λj

)−(1−α)
∂λi
∂λj

]}

,

and
∂λi
∂λj

=
∂λi
∂t

∂t

∂λj
=

(

λi
λj

)1−α
Lri
Lrj

. (78)

The third term in the second line of (77) illustrates the effect of the accumulation of

the jth type of knowledge (the knowledge of high-tech firm j) on the accumulation of

remaining types of knowledge.

In symmetric equilibrium, according to (74) the growth rate of knowledge is given by

gλ = ξNLr. (79)

The rate of return on R&D can be derived from (14), (75)-(78). It is the same as (24)

where I1S.2 = 0,

gqλ = r − gλ

(

Lx
Lr

+ 1

)

.

The growth rates of quantities and prices that characterise the essential dynamics of this

model are given by (48)-(53).

Combining (24) with (14), (25), (28), (29), (47)-(53), (75), and (79) gives a differential

equation in Lr:

L̇r =
L−NLr
Nθ

{[(θ − 1) σ +D] ξNLr − (ξDL− ρ)} , (80)

which is the counterpart of (54).

Let θ ≥ 1 and (31) hold. Therefore, given that the first term of this differential

equation is non-negative there is a unique Lr such that (80) is stable and NLr, NLx, LY ∈

(0, L):

NLr =
1

ξ

ξDL− ρ

(θ − 1) σ +D
.

Combining this expression with the relations between NLx and LY (25) and NLx and

NLr (29) and (79) gives the equilibrium allocations of labor force and growth rates of

final output and knowledge. These coincide with (32)-(36), which means that knowledge

licensing and R&D cooperation deliver equivalent equilibrium outcomes.18

18This result does not hold if there is continuous entry into the high-tech industry as shown in Jerbashian
(2014) and Jerbashian (2015).
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Appendix E.2

In this section, I relax, in two ways, the assumption that there are externalities within

high-tech firms and present the main properties of the model. First I assume that there

are decreasing returns to R&D at firm-level unless there is an exchange of knowledge

among high-tech firms. Next, I assume that there are no externalities in high-tech firms

and, as in the main text, returns on R&D are constant even if there is no exchange of

knowledge.

I have assumed that N is a real number. If N also changes continuously then in the

sums in (10) and (11) each firm has zero size. Since λ of each firm is finite, dropping firm

j or any finite number of firms from those sums makes no difference for the inference. If

N changes discretely (and each firm has unit size), then let N > 2.

Decreasing Returns to R&D Within Firms

I assume that if there is knowledge licensing, the R&D process of high-tech firm j is given

by

λ̇j = ξ

[

N
∑

i=1,i 6=j

(ui,jλi)
α

]

λ1−αj Lrj . (81)

This is the counterpart of (10) where uj,j ≡ 0. In turn, if there are knowledge spillovers

the R&D process is given by (11) where

Λ̃ =
N
∑

i=1,i 6=j

λαi . (82)

Therefore, the counterpart of (18) and (22) is given by

∂λ̇j
∂λj

= ξ (1− α)

[

N
∑

i=1,i 6=j

(

ui,jλi
λj

)α
]

Lrj . (83)

Clearly, these R&D processes imply that if there is no exchange of knowledge among

high-tech firms then the economy does not grow in the long-run.

Assuming symmetric equilibrium in the high-tech industry, the growth rate of knowl-

edge can be rewritten as

gλ = ξ (N − 1)Lr. (84)

The rate of return on R&D can be obtained from the optimal rules of the high-tech

firm (14), (15), and (17), (21), (83). It is given by (24). Combining (24) with (14), (15),
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(25), (28), (29), (47), (48)-(53) and (84) gives the counterpart of (54),

L̇r =
L−NLr
Nθ

(85)

×

{

[

(θ − 1) σ + αI1S.2 +D
]

ξ
N − 1

N
NLr −

(

ξD
N − 1

N
L− ρ

)}

.

I assume that

ξD
N − 1

N
L− ρ > 0.

The stable and interior solution of this differential equation then is

NLr =
1

ξ

ξDL− N
N−1

ρ

(θ − 1) σ + αI1S.2 +D
.

Therefore, gλ is given by

gNEλ =
ξDN−1

N
L− ρ

(θ − 1) σ + αI1S.2 +D
.

The ratio (N − 1) /N appears in gλ since the size of a firm’s knowledge relative to the

market indicates the amount of knowledge which does not enter the R&D process. The

number of high-tech firms, N , then has two effects on innovation since it affects compet-

itive pressures in the high-tech industry and this ratio. The latter effect is absent in S.1

and S.2 setups.

The comparative statics with respect to αI1S.2, N , and ε presented in the section Entry

Regime 1: Barriers to Entry hold. Welfare is higher in S.1 than in S.2, and decentralised

equilibrium does not deliver the first best outcomes.

When there is cost-free entry, the growth rate of productivity gλ that solves the zero

profit condition (44) is given by

gλ =
ρ

e− 1− αI1S.2 − (θ − 1) σ
. (86)

Using the Implicit Function Theorem and (86) it can be easily shown then that

∂N

∂ε
< 0,

NS.1 < NS.2.

However, in this case

∂gCFE,S.1−2
λ

∂ε
6= 0,

gCFE,S.1λ < gCFE,S.2λ .
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The latter inequality holds in this case because higher α implies higher N which has two

effects on gλ, through D and (N − 1)/N .

Welfare comparison is not straightforward since, even though gCFEλ declines with α,

NLx declines with (N − 1)/N .

No Externalities Within Firms

In this section, I assume that when there are knowledge spillovers the R&D process is

given by

λ̇j = ξ
(

λj + Λ̃λ1−αj

)

Lrj , (87)

where I assume that in equilibrium Λ̃ is given by (82).

From (87) it follows that (22) needs to be rewritten as

∂λ̇j
∂λj

= ξ

[

1 + (1− α)
N
∑

i=1,i 6=j

(

λi
λj

)α
]

Lrj . (88)

The rate of return on R&D can be derived from the optimal rules of the high-tech

firm (14), (15), and (17), (21), (87), and (88). In a symmetric equilibrium, it is given by

gqλ = r − gλ

[

Lx
Lr

+
1 + (1− α) (N − 1)

N

]

. (89)

Combining (89) with (14), (15), (23), (25), (28), (29), (47), and (48)-(53) gives the

counterpart of (54),

L̇r =
L−NLr
Nθ

{[

(θ − 1) σ +D + α
N − 1

N

]

ξNLr − (ξDL− ρ)

}

.

Therefore, the stable solution of this differential equation is

NLr =
1

ξ

ξDL− ρ

(θ − 1) σ +D + αN−1
N

,

and

gNE,S.2λ =
ξDL− ρ

(θ − 1) σ +D + αN−1
N

.

The ratio (N − 1) /N appears in these expressions since the size of a firm’s knowledge

relative to the market indicates the amount of knowledge which is not in the spillovers

term. The number of high-tech firms, N , then has two effects on innovation since it

affects competitive pressures in the high-tech industry and this ratio. The latter effect is

absent in S.1 and S.2 setups.

Clearly, the comparative statics with respect to αI1S.2 and ε presented in the section

Entry Regime 1: Barriers to Entry hold. Welfare is higher in S.1 than in S.2, and decen-
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tralised equilibrium does not deliver the first best outcomes. However, the derivative of

gNE,S.2λ with respect to N depends on model parameters.

When there is cost-free entry, the growth rate of productivity gλ that solves the zero

profit condition (44) is given by (86) where there is α (N − 1) /N instead of α. Using

gλ from (86), the Implicit Function Theorem, and parameter restriction (71), it can be

easily shown then that

∂N

∂ε
< 0,

NS.1 < NS.2,

∂gCFE,S.1−2
λ

∂ε
6= 0,

gCFE,S.1λ > gCFE,S.2λ .

Welfare comparison is not straightforward and is omitted for brevity.

Appendix E.3

In this section, I offer a setup where knowledge can be licensed; however there are some

knowledge spillovers.

I assume that the R&D process is given by

λ̇j = ξ

[

N
∑

i=1

λ̃i (ui,jλi)
α1

]

λα2
j Lrj , (90)

where for modelling knowledge spillovers, I assume that, in equilibrium,

λ̃i = (ui,jλi)
1−α1−α2 .

Moreover, I take

1− α1 − α2 < α,

α1 < α,

in order to have lower magnitude of spillovers than in S.2 and fewer internalised returns

on R&D than in S.1.

From the optimal problem of high-tech firm j it follows that the demand functions
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for labor force for production and R&D are then given by

w = λjpxj

(

1−
1

ej

)

, (91)

w = qλj
∂λ̇j
∂Lrj

. (92)

In turn, the returns on R&D are given by

q̇λj
qλj

= r −

(

ej − 1

ej

pxj
qλj

Lxj +
∂λ̇j
∂λj

+
N
∑

i=1,i 6=j

puj,iλjuj,i

qλj

)

,

where
∂λ̇j
∂λj

= ξλα2−1
j Lrj

[

α2

N
∑

i=1

λ̃i (ui,jλi)
α1 + α1λ̃jλ

α1
j

]

,

and the supply of and demand for knowledge are

uj,i = 1, ∀i 6= j,

pui,jλi = qλjξα1λ̃i (ui,jλi)
α1−1 λα2

j Lrj , ∀i 6= j.

In a symmetric equilibrium, the returns on R&D and demand for knowledge can be

rewritten as

gqλ = r − gλ

(

Lx
Lr

+ α1 + α2

)

, (93)

pui,jλi = qλjξα1Lrj , ∀i 6= j. (94)

These are the counterparts of (24) and (19). They indicate that firms in this setup have

lower returns on R&D than in S.1 since α1+α2 > 1−α, and this is because firms receive

lower licensing fees since α1 < α.

Using (29), (48)-(53), (91) and (92) the returns on R&D (93) can be rewritten as a

differential equation in Lr,

L̇r =
L−NLr
Nθ

{[(θ − 1) σ +D + 1− (α1 + α2)] ξNLr − (ξDL− ρ)} ,

This differential equation is stable if

NLr =
1

ξ

ξDL− ρ

(θ − 1) σ +D + 1− (α1 + α2)
.

This implies that the economy immediately jumps to a balanced growth path. Labor

force allocations and gλ can be found from (25), (29), and (90). The difference among

these outcomes and (32)-(36) is summarised by the term 1−(α1 + α2). The decentralised
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equilibrium inference from this setup is somewhere inbetween the inference from S.1 and

S.2 setups because α > 1− (α1 + α2) > 0.

Appendix E.4

In this section, I present the main properties of the model if high-tech firms take into

account the effect of their R&D on the price of knowledge puj,iλj . Further, I offer a policy

which leads to socially optimal outcomes.19

The high-tech firms in this case internalise the demand (19). Therefore, the profit

function of high-tech firm j “at the stage” when it designs its supply of knowledge and

R&D is

πj = pxjxj − w
(

Lxj + Lrj
)

+

[

αξ
N
∑

i=1,i 6=j

qλi (uj,iλj)
α λ1−αi Lri −

N
∑

i=1,i 6=j

pui,jλi (ui,jλi)

]

.

This implies that, everything else the same, (17) needs to be rewritten as

q̇λj
qλj

= r −

[

ekj − 1

ekj

pxj
qλj

Lxj +
∂λ̇j
∂λj

+ α2ξ
N
∑

i=1,i 6=j

qλi (uj,iλj)
α λ1−αi Lri

qλjλj

]

.

Therefore, in symmetric equilibrium the rate of return on R&D is

gqλ = r − gλ

[

Lx
Lr

+ 1− α (1− α)
N − 1

N

]

. (95)

In this expression the third term in square brackets captures the adverse effect of higher

R&D on the price of knowledge.

Combining (48)-(53), (29), and (95) gives the counterpart of (54),

L̇r =
L−NLr
Nθ

×

{[

(θ − 1) σ +D + α (1− α)
N − 1

N

]

ξNLr − (ξDL− ρ)

}

.

19I assume that price discrimination is not feasible. This is necessary in order to avoid the problem with
determination of the price of durable goods (Coase, 1972). In this framework it can be supported, for
example, by an assumption that the licensors have to license their entire knowledge (at a uniform price).
Another assumption that could support this is that licensors rent (but not sell) their knowledge and
cannot monitor its use.
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Therefore, in equilibrium labor force allocations and gλ are given by

NLNE,Mr =
1

ξ

ξDL− ρ

(θ − 1) σ +D + α (1− α) N−1
N

,

NLNE,Mx = D

[

(θ − 1) σ + α (1− α) N−1
N

]

L+ 1
ξ
ρ

(θ − 1) σ +D + α (1− α) N−1
N

,

LNE,MY =
1− σ

σb
NLx,

gNE,Mλ = ξNLNE,Mr ,

where I use M in order to indicate that the firms are price setters in the market for

knowledge in the sense that they internalise the effect of R&D on the price of knowledge.

If N changes continuously then N−1
N

can be replaced by 1 in all these expressions.

Clearly, the comparative statics with respect to ε presented in the section Entry

Regime 1: Barriers to Entry hold. The decentralised equilibrium does not deliver the first

best outcomes. The derivative of gNE,S.2λ with respect to N depends on model parameters.

Comparing these results with (32)-(36) it is clear that for any given N

gNE,S.1λ > gNE,Mλ > gNE,S.2λ .

This implies that ŪNE,S.1 > ŪNE,M > ŪNE,S.2.

When there is cost-free entry, the growth rate of productivity gλ which solves the zero

profit condition (44) is given by (86) where there is α (1− α) (N − 1) /N instead of α.

Using gλ from (86), the Implicit Function Theorem, and parameter restriction (71), it

can be easily shown then that

∂N

∂ε
< 0,

NCFE,S.1 < NCFE,M < NCFE,S.2,

∂gCFE,Mλ

∂ε
6= 0,

gCFE,S.1λ > gCFE,Mλ > gCFE,S.2λ .

Welfare comparison is not straightforward and is omitted for brevity.

Appendix E.5

In this section, I incorporate population growth in the model presented in the main text,

so that L̇/L = n > 0. As I show below, the model then becomes a semi-endogenous

(second generation) growth model in the spirit of Jones (1995).

To incorporate population growth, I make several changes in the setup. I assume that,

40



in case when there is licensing, the knowledge production function of high-tech firm j is

given by

λ̇j = ξ
N
∑

i=1

[

(ui,jλi)
α λ1−αj

]φ
Lγrj L̃

ψ−1
r , (96)

where γ ∈ (0, 1], φ ≥ 0, ψ ≥ 0, and L̃r denotes the average number of the researchers in

the economy,

L̃r =
1

N

N
∑

i=1

Lri .

It is exogenous to high-tech firms’ decisions.

When there are spillovers, I assume that the knowledge production function is given

by

λ̇j = ξΛ̃λ
(1−α)φ
j Lγrj L̃

ψ−1
r , (97)

where

Λ̃ =
N
∑

i=1

λαφi . (98)

The remainder of the model is kept intact. Therefore, this setup coincides with the setup

offered in the main text when there is no population growth and γ = φ = ψ = 1.

High-tech firm j’s problem is given by

Vj (t̄) = max
pxj ,Lrj

,{uj,i,ui,j}
N
i=1;(i 6=j)







+∞
∫

t̄

πj (t) exp

[

−
t
∫

t̄

r (s) ds

]

dt







(99)

s.t.

(6), (9) and either (96) or (97),

where t̄ is the entry date and

πj = pxjxj − w
(

Lxj + Lrj
)

(100)

+

[

N
∑

i=1,i 6=j

puj,iλj (uj,iλj)−
N
∑

i=1,i 6=j

pui,jλi (ui,jλi)

]

.

It follows then that firm j’s demands for labor for production and R&D are given by

(14) and (15). Moreover, when there is knowledge licensing, the returns on knowledge

accumulation are given by

q̇λj
qλj

= r −

(

ej − 1

ej

pxj
qλj

Lxj +
∂λ̇j
∂λj

+
N
∑

i=1,i 6=j

puj,iλjuj,i

qλj

)

, (101)

where
∂λ̇j
∂λj

= ξφ

{

λφ−1
j + (1− α)

N
∑

i=1,i 6=j

[

(ui,jλi)
α λ1−αj

]φ

λj

}

Lγrj L̃
ψ−1
r . (102)
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The demand for and the supply of knowledge in this case are given by

pui,jλi = qλjξφα

[

(ui,jλi)
α λ1−αj

]φ

ui,jλi
Lγrj L̃

ψ−1
r , ∀i 6= j, (103)

uj,i = 1, ∀i 6= j. (104)

When there are knowledge spillovers among high-tech firms, the returns on knowledge

accumulation are given by (101) but

puj,iλj = 0, ∀i, (105)

and
∂λ̇j
∂λj

= ξ (1− α)φ
Λ̃λ

(1−α)φ
j

λj
Lγrj L̃

ψ−1
r . (106)

In what follows I focus on a symmetric equilibrium and balanced growth path analysis.

In symmetric equilibrium, the knowledge production function is given by

λ̇ = ξNλφLγ+ψ−1
r . (107)

When there is knowledge licensing, I use (14), (15), (101), (102), (103), and (104) to

rewrite the returns on knowledge accumulation as

gqλ = r − gλ

(

γ
Lx
Lr

+ φ

)

.

In turn, when there are knowledge spillovers, I use (14), (15), (101), (105), and (106) to

rewrite the returns on knowledge accumulation as

gqλ = r − gλ

[

γ
Lx
Lr

+ (1− α)φ

]

.

Therefore, in general, the returns on knowledge accumulation are given by

gqλ = r − gλ

[

γ
Lx
Lr

+
(

1− αI1S.2
)

φ

]

. (108)

Clearly, this expression is identical to (24) when γ = φ = 1.

I use small letters with a hat to denote per-capita levels. Since there is population
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growth, the representative household solves the following problem.

max
ĉ







+∞
∫

0

ĉ1−θt − 1

1− θ
exp (− (ρ− n) t) dt







(109)

s.t.

˙̂a = (r − n) â+ w − ĉ. (110)

The optimal rule that follows from the household’s optimal problem is the standard Euler

equation,

gĉ =
1

θ
(r − ρ) . (111)

This, together with budget constraint (110), describes the paths of the household’s con-

sumption and assets.

From (2), (3), (4), (9), (111), and goods market clearing condition (30) it follows that

gŷ = σgX + (1− σ) gLY
− n, (112)

gX = gx, (113)

gŷ = gw + gLY
− n, (114)

gx = gλ + gLx
, (115)

r = θgĉ + ρ, (116)

gĉ = gŷ. (117)

From (15) and (107) it follows that on a balanced growth path the following conditions

hold:

gqλ = gw − φgλ − (γ + ψ − 2)n, (118)

gλ =
γ + ψ − 1

1− φ
n. (119)

This implies that in order for gλ to be positive on a balanced growth path it is sufficient

to have γ + ψ − 1 > 0 and φ < 1. To keep utility finite, I also require the following

condition on the parameters of the model:

(ρ− n) + (θ − 1) σgλ > 0. (120)

The system of equations (112)-(118) and (108) imply that on a balanced growth path the

following condition holds:

gλ
γ

β

NLx
NLr

=
[

(θ − 1) σ + αI1S.2φ
]

gλ + (γ + ψ − 2)n+ ρ. (121)
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Labor shares in this equation are necessarily positive when γ + ψ − 1 > 0, φ < 1, and

(120) holds.

From (25) and the labor market clearing condition (28) it follows that

NLx = D (L−NLr) , (122)

where

D =
σ (e− 1)

e− σ
. (123)

Equations (121) and (122) solve for the balanced growth path values of the share of

labor force allocated to the production of high-tech goods, ωLx
= NLx/L, and the share

of labor force allocated to R&D, ωLr
= NLr/L. These shares are given by

ωLx
=

DF (α)

D + F (α)
,

ωLr
=

D

D + F (α)
,

where I use F (α) to denote

F (α) =
[(θ − 1) σ + αI1S.2φ] gλ + (γ + ψ − 2)n+ ρ

gλ
γ

β

.

In turn, the share of labor force allocated to the production of final goods is given by

(25),

ωLY
=

1− σ

σ

1

b

DF (α)

D + F (α)
,

where b is given by (26).

It is evident that F (α) increases with α. Therefore, when there is knowledge licensing

both ωLx
and ωLY

are lower than when there are knowledge spillovers. This implies that

output and consumption are lower when there is knowledge licensing. Such a result also

holds in the model presented in the main text as discussed on page 13.

In turn, from (119) it follows that the growth rate of final output does not depend

on α in this semi-endogenous growth model, and it is the same no matter if there is

knowledge licensing or there are knowledge spillovers. This result holds because growth

and innovation do not depend on labor allocations and incentives in this version of the

model.20 It implies that balanced growth path welfare is lower when there is knowledge

licensing than when there are knowledge spillovers. This is in contrast to the inference

from the model presented in the main text. There, the growth rate of final output and

welfare are higher when there is knowledge licensing than when there are knowledge

20This has served as a margin of criticism for semi-endogenous growth models (see, for example, Young,
1998, Jones, 1999).
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spillovers, even though ωLx
and ωLY

are lower.

Further, I endogenize the number of firms assuming cost-free entry. The number of

firms then is given by a zero profit condition, π̄ = 0, which is equivalent to

e = 1 + F (α) .

The right-hand side of this expression increases with α and the left hand-side increases

with N . Therefore, similarly to the model presented in the main text, the number of

firms is lower when there is knowledge licensing than when there are knowledge spillovers

(see Proposition 4).

On a balanced growth path the per-capita final output is given by

ŷ = N
σ

ε−1λσωσLx
ω1−σ
LY

.

I denote an adjusted measure of output as

ȳ = N
σ

ε−1ωσLx
ω1−σ
LY

.

The balanced growth path welfare increases with ȳ and depends on α only through ȳ.

Clearly, the latter statement ignores possible differences because of the levels of λ. In this

sense, I consider two countries which start at the same values of λ and are on a balanced

growth path, but they have different values of α.

The derivative of ȳ with respect to α is given by

1

ȳ

∂ȳ

∂α
=

σ

ε− 1

1

N

∂N

∂α
+ σ

1

ωLx

(

∂ωLx

∂α
+
∂ωLx

∂e

∂e

∂α

)

+ (1− σ)
1

ωLY

(

∂ωLY

∂α
+
∂ωLY

∂e

∂e

∂α

)

.

It can be shown that in this expression, the first two terms are positive and the last

term is equal to zero. Therefore, output increases with α and it is higher when there are

knowledge spillovers than when there is knowledge licensing. This implies that balanced

growth path welfare is also higher when there are knowledge spillovers. Such a result is in

contrast to the results from the model offered in the main text. There is such a difference

because in the model offered in the main text innovation and growth rate decline with α,

which is not the case here.

Appendix E.6

In this section, I incorporate dynamic entry of firms in the setup of the Appendix E.5.

I show below that the model then becomes a scale-free (third generation) endogenous

growth model in the spirit of Young (1998).

In particular, the model presented in this section bears a close resemblance to the
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model in Section III of Jones (1999). Firm entry is assumed to be proportional to pop-

ulation, which eliminates scale effects in this particular case because population growth

results in more R&D performing firms and increases the division of labor across the firms.

To incorporate firm entry, I make several changes in the setup of the model presented

in Appendix E.5. I assume that there is free entry into the high-tech industry and at

each instant a new firm arrives into the market according to the following entry rule (law

of motion):

Ṅ = ηN δL, (124)

where

δ =
1

γ + ψ − 1
,

η ≥ 0.

Moreover, I assume that δ ≤ 1 (i.e., γ+ψ−1 ≥ 1) and φ = 1 in the knowledge production

function.21

The entry rule (124) implies that high-tech firms have no decision on entry. This is

a simplification which allows the model to have a tractable inference. Alternatively, en-

trants could hire labor for entry. This would complicate the setup adding another variable

that should be solved from the labor market clearing condition. Such a simplification is

reasonable as long as that variable does not explicitly depend on α. In this regard, it

needs to be assumed that the value of any high-tech firm is greater than zero in order for

the continual entry of firms to be justifiable. I maintain this assumption. This setup then

prohibits the analysis of the effects of knowledge licensing and spillovers on the number

of high-tech firms. Therefore, I do not carry it in this section.

Labor shares ωLY
= LY /L, ωLx

= NLx/L, and ωLr
= NLr/L are constant on a

balanced growth path. According to (25), (28), (122) and (123), labor shares are constant

when the perceived elasticity of substitution, e, is constant. The perceived elasticity of

substitution depends on N according to (27). Clearly, its variation because of firm entry

can be ignored when the number of firms is very large. Hereafter, it is assumed that the

number of firms is so large that the variation of e can be ignored.

Further, to limit the growth effects of firm entry I assume that the production function

of final output is given by

Y = N−χXσL1−σ
Y , (125)

where
σ

ε− 1
≥ χ ≥ 0.

21The restrictions on the values of δ and φ help to eliminate the scale effects in this model. Admittedly, they
are strong. The literature labels them as “knife-edge” conditions. Parameter restriction γ + ψ − 1 ≥ 1
can be relaxed assuming that ξ declines with N .
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The remainder of the model is kept intact. Therefore, this setup coincides with the setup

in Appendix E.5 when χ = η = 0, V is not greater than zero for all firms (and potential

firms), and φ ≥ 0. It coincides with the setup offered in the main text if, further, there

is no population growth and γ = φ = ψ = 1.

I focus on a symmetric equilibrium and consider the balanced growth path of the

model. From (3), (4), (9), (15), (30), (107), (111), (124), and (125) it follows that on the

balanced growth path the following conditions hold:

gX =
ε

ε− 1
gN + gx, (126)

gŷ = gw, (127)

gx = gλ + n− gN , (128)

gqλ = gw + n− gN − gλ, (129)

gĉ = gŷ, (130)

and

gλ = ξ
Lγ+ψ−1

Nγ+ψ−2
ωγ+ψ−1
Lr

, (131)

r = θgĉ + ρ, (132)

gN =
1

1− δ
n, (133)

gŷ = σ (gX − n)− χgN . (134)

In turn, from (25), (122), and (108) it follows that

ωLY
=

1− σ

σ

1

b
ωLx

, (135)

ωLx
= D (1− ωLr

) , (136)

gqλ = r − gλ

(

γ
ωLx

ωLr

+ 1− αI1S.2

)

. (137)

I combine equations (126)-(137) to obtain

gŷ = σgλ +

(

σ

ε− 1
− χ

)

1

1− δ
n, (138)

and

ωγ+ψ−1
Lr

[

γD
1− ωLr

ωLr

− αI1S.2 − (θ − 1) σ

]

= Γ, (139)

where

Γ =

(

ξ
Lγ+ψ−1

Nγ+ψ−2

)−1{[

(θ − 1)

(

σ

ε− 1
− χ

)

+ 1

]

1

1− δ
n+ (ρ− n)

}

.
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Equations (131), (138) and (139) solve for gλ, gŷ, and the share of labor force in R&D,

respectively. The growth rates of λ, per capita output, and consumption increase with

ωLr
because γ + ψ − 1 > 0. In turn, from (139) it can be shown that

∂ωLr

∂α
=

ωLr

(γ + ψ − 2) γD 1
ωLr

− (γ + ψ − 1) [γD + αI1S.2 + (θ − 1) σ]
.

The knowledge production function of this setup closely resembles the knowledge

production function offered in the main text when γ + ψ − 1 is close to 1 (from above).

It is clear from this expression that ωLr
and gŷ decline with α when γ + ψ − 1 is close

to 1 (i.e., γ + ψ − 2 is close to zero). Therefore, on the balanced growth path, at least

for such parameter values, economic growth is higher when there is knowledge licensing

than when there are knowledge spillovers.

For welfare comparisons, I consider two countries which start at the same values of

λ and N (and L) and are on a balanced growth path, but they have different values of

α. It can be shown that on the balanced growth path a monotonic transformation of the

welfare function is given by

ŪFE,BGP = −

(

ωσLx
ω1−σ
LY

)1−θ

(θ − 1) σgλ + (θ − 1)
(

σ
ε−1

− χ
)

1
1−δ

n+ ρ− n
.

The derivative of ŪFE,BGP with respect to α is given by

∂ŪFE,BGP

∂α
= − (θ − 1) ŪFE,BGP

×
∂ωLr

∂α

[

σ (γ + ψ − 1)

(θ − 1) σgλ + (θ − 1)
(

σ
ε−1

− χ
)

1
1−δ

n+ ρ− n

gλ
ωLr

−
1

1− ωLr

]

.

If the expression in the second line is negative (positive) then welfare is higher (lower)

when there is knowledge licensing than when there are knowledge spillovers. It is negative,

for example, when γ + ψ − 1 is close to 1 from above and σ is close to 0 from above.

Therefore, at least for such parameter values, the (balanced growth path) results of this

model are similar to the results of the model presented in the main text.
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Abstrakt 

Ve svém výzkumu modeluji licencování vědomostí (patentů) a hodnotím regulaci duševního 
vlastnictví v modelu endogenního růstu, jehož hlavním zdrojem růstu je interní R&D firem 

orientujících se na špičkové technologie. Ukazuji, že tyto firmy inovují více a ekonomický růst 
je větší pakliže licencování duševního vlastnictví je možné a pakliže regulace duševního 
vlastnictví usnadňuje vylučitelnost vědomostí, než když jsou vědomosti nevylučitelné a 
existují vědomostní externality mezi firmami. Nicméně, licencování duševního vlastnictví, 
relativně k vědomostním externalitám, vede k nižšímu počtu firem a nikoliv nutně k vyššímu 
společenskému užitku. 
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